
PostgreSQL Distributed

Marco Slot - marco.slot@gmail.com

Formerly: founding engineer at Citus Data, architect at Microsoft

Architectures & Best Practices

mailto:marco.slot@gmail.com

Today’s talk on PostgreSQL Distributed

Many distributed database talks discuss algorithms for distributed query planning,
transactions, etc.

In distributed systems, trade-offs are more important than algorithms.

Vendors and even many papers rarely talk about trade-offs.

Many different PostgreSQL distributed system architectures with different trade-offs exist.

Experiment: Discuss PostgreSQL distributed systems architecture trade-offs by example.

Single machine PostgreSQL

PostgreSQL on a single machine can be incredibly fast

No network latency

Millions of IOPS

Microsecond disk latency

Low cost / fast hardware

Can co-locate application server

Single machine PostgreSQL?

PostgreSQL on a single machine comes with operational hazards

Machine/DC failure (downtime)

Disk failure (data loss)

System overload (difficult to scale)

Disk full (downtime)

PostgreSQL Distributed (in the cloud)

Fixing the operational hazards of single machine PostgreSQL requires a distributed set up.

The cloud enables flexible distributed set ups, with resources shared between customers for
high efficiency and resiliency.

Goals of distributed database architecture

Goal: Offer same functionality and transactional semantics as single node
RDBMS, with superior properties

Mechanisms: Replication - Place copies of data on different machines

Distribution - Place partitions of data on different machines

Decentralization - Place different DBMS activities on different machines

Reality: Concessions in terms of performance, transactional semantics,
functionality, and/or operational complexity

PostgreSQL Distributed Layers

Client

Pooler

Query engine

Storage manager

Disk Cloud block storage (e.g. Amazon EBS, Azure Premium SSD)

Logical data layer Active-active, federation (e.g. BDR, postgres_fdw)

Transparent sharding (e.g. Citus, Aurora limitless), DSQL

DBMS-optimized cloud storage (e.g. Aurora, Neon)

Load balancing and sharding (e.g. pgbouncer, pgcat)

Data files, WAL Read replicas, hot standby

Manual sharding, load balancing, write to multiple endpoints

Distributed architectures can hook in at different layers — many are orthogonal!

Practical view of Distributed PostgreSQL

Today we will cover:

• Network-attached block storage

• Read replicas

• DBMS-optimized cloud storage

• Transparent Sharding

• Active-active deployments

• Distributed key-value stores with SQL

Two questions:

1) What are the trade-offs?

2) For which workloads?

Latency, Efficiency, Cost, Scalability, Availability, Consistency, Complexity, …

Lookups, analytical queries, small updates, large transforms, batch loads, …

The perils of latency: Synchronous protocol

Transactions are performed step-by-step on each session.

BEGIN;
SELECT

UPDATE

COMMIT;

time

Client PostgreSQL

may need to read from disk

write to the heap
(asynchronously flushed to disk)

write to write ahead log
(synchronously flushed to disk)

Max throughput per session = 1 / avg. response time

Locks!

The perils of latency: Connection limits

Max overall throughput: #sessions / avg.response time

PostgreSQL

Number of processes limited by memory, contention

Application

Application

Application

Number of connections limited by app architecture

Network-attached
block storage

Hypervisor

VM

Network-attached block storage

PostgreSQL

Block Storage API

Network

Single AZ/DC

Multi-tenant

Network-attached storage

Pros:

Higher durability (replication)

Higher uptime (replace VM, reattach)

Fast backups and replica creation (snapshots)

Disk is resizable

Cons:

Higher disk latency (~20μs -> ~1000μs)

Lower IOPS (~1M -> ~10k IOPS)

Crash recovery on restart takes time

Cost can be high

General guideline:
Always use, durability &
availability are more
important than performance.

Read replicas

Read replicas

PostgreSQL
(primary)

PostgreSQL
(replica)

PostgreSQL
(replica)

Physical replication (data files + WAL)

Readable replicas can help you scale read throughput, reduce latency through cross-region
replication, improve availability through auto-failover.

Scaling read throughput

PostgreSQL
(primary)

PostgreSQL
(replica)

PostgreSQL
(replica)

Readable replicas can help you scale read throughput (when reads are CPU or I/O
bottlenecked) by load balancing queries across replicas.

.. Scale out …

Load
Balancing

Client

Client

?

(Several options)

Eventual read-your-writes consistency

PostgreSQL
(lsn=9)

Replica A
(lsn=8)

Replica B
(lsn=7)

Read replicas can be behind on the primary, cannot always read your writes.

Load
BalancingClient

Client

INSERT INTO shopping_cart
SELECT .. FROM shopping_cart

No monotonic read consistency

PostgreSQL
(lsn=9)

Replica A
(lsn=9)

Replica B
(lsn=7)

Load-balancing across read replicas will cause you to go back-and-forth in time.

Load
BalancingClient

1
2
3

1
3

2
Client

INSERT

SELECT count(*)

Poor cache usage

PostgreSQL
(primary)

Replica A
(id=1, id=2, …)

Replica B
(id=1, id=2, …)

If all replicas are equal, they all have the same stuff in cache

Load
BalancingClient

SELECT .. WHERE id = 1

SELECT .. WHERE id = 2

If working set >> memory, all replicas get bottlenecked on disk I/O.

Read scaling trade-offs

Pros:

Read throughput scales linearly

Low latency stale reads if read replica is closer than primary

Lower load on primary

Cons:

Eventual read-your-writes consistency

No monotonic read consistency

Poor cache usage

General guideline:
Consider at >100k reads/sec
or heavy CPU bottleneck, but
avoid for dependent
transactions and large working
sets.

DBMS-optimized
storage
Like Aurora, Neon, AlloyDB

DBMS-optimized storage

Cloud storage that can perform background page writes autonomously, which saves on
write I/O from primary. Also optimized for other DBMS needs (e.g. read replicas).

PostgreSQL
(primary)

Block Storage API

WAL pages

Regular cloud storage

PostgreSQL
(primary)

DBMS-optimized

WAL

PostgreSQL
(replica)

pages

DBMS-optimized storage trade-offs

Pros:

Potential performance benefits by avoiding page writes from primary

No long crash recovery

Replicas can reuse storage, incl. hot standby

Less rigid than network-attached storage implementations (faster reattach, branching, ...)

Cons:

Write latency is high by default

High cost / pricing

PostgreSQL is not designed for it

General guideline:
Consider using for complex
workloads, but measure
whether price-performance
under load is better than a
bigger machine.

Transparent
sharding
Like Citus

Transparent sharding

Distribute tables by a shard key and/or replicate tables across multiple (primary) nodes.

Queries & transactions are transparently routed / parallelized.

Tables can be co-located to enable local joins, foreign keys, etc. by the shard key.

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

Single shard queries for operational workloads

Scale capacity for handling a high rate of single shard key queries:

Per-statement latency can be a bottleneck!

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

insert into items (user_id, …) values (123, …);

insert into i4 …

Data loading in sharded system

Pipelining through COPY can make data loading a lot more efficient and scalable

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

COPY items FROM STDIN WITH (format 'csv')

COPY

Compute-heavy queries

Compute-heavy queries (shard key joins, json, vector, …) get the most relative benefit

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

select compute_stuff(…) from users join items using (user_id) where user_id = 123 …

select

Multi-shard queries for analytical workloads

Parallel multi-shard queries can quickly answer analytical queries across shard keys:

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

select country, count(*) from items, users where … group by 1 order by 2 desc limit 10;

Multi-shard queries for operational workloads

Multi-shard queries add significant overhead for simple non-shard-key queries

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

select * from items where item_id = 87;

Multi-shard queries for analytical workloads

Snapshot isolation is a challenge (involves trade-offs):

PostgreSQL
(primary coordinator)

PostgreSQL
(primary)

PostgreSQL
(primary)

Load balancer

users items users items users items

u1
i1

u4
i4

u2
i2

u5
i5

u3
i3

u6
i6

select country, count(*) from items, users where … group by 1 order by 2 desc limit 10;

↔ BEGIN;
← INSERT INTO items VALUES (123, …);
→ INSERT INTO items VALUES (456, …);
↔ COMMIT;

Sharding trade-offs

Pros:

Scale throughput for reads & writes (CPU & IOPS)

Scale memory for large working sets

Parallelize analytical queries, batch operations

Cons:

High read and write latency

Data model decisions have high impact on performance

Snapshot isolation concessions

General guideline:
Use for multi-tenant apps,
otherwise use for large
working set (>100GB) or
compute heavy queries.

Active-active
Like BDR, pgactive, pgEdge, …

Active-active / n-way replication

PostgreSQL
(primary)

PostgreSQL
(primary)

PostgreSQL
(primary)

Accept writes from any node, use logical replication to asynchronously exchange and
consolidate writes.

reads
writes

reads
writes

reads
writes

UPDATE counters SET val = val + 1 UPDATE counters SET val = val + 1

async

Active-active / n-way replication

PostgreSQL
(primary)

PostgreSQL
(primary)

PostgreSQL
(primary)

All nodes can survive network partitions by accepting writes locally, but no linear history
(CAP).

reads
writes

reads
writes

reads
writes

async

Active-active trade-offs

Pros:

Very high read and write availability

Low read and write latency

Read throughput scales linearly

Cons:

Eventual read-your-writes consistency

No monotonic read consistency

No linear history (updates might conflict after commit)

General guideline:
Consider only for simple data
models (e.g. queues) and only
if you really need the benefits.

Distributed SQL
Like Yugabyte, CockroachDB, Spanner

Tables are stored on distributed key-value stores, shards replicated using Paxos/Raft.

Distributed transactions with snapshot isolation via global timestamps (HLC or TrueTime).

Distributed key-value storage with SQL (DSQL)

PostgreSQLike

users items

PostgreSQLike

users items

PostgreSQLike

users items

PostgreSQLike

users items

u11-20 u11-20 u11-20

u21-30 u21-30 u21-30

i1-100 i1-100

i101-200

i1-100

i101-200 i101-200

Distributed key-value storage trade-offs

Pros:

Good read and write availability (shard-level failover)

Single table, single key operations scale well

No additional data modelling steps or snapshot isolation concessions

Cons:

Many internal operations incur high latency

No local joins in current implementations

Less mature and optimized than PostgreSQL

General guideline:
Just use PostgreSQL ;)

but for simple apps, the
availability benefits can be useful

Conclusion

PostgreSQL can be distributed at different layers.

Each architecture can introduce severe trade-offs.

Almost nothing comes for free..

Keep asking:

What do I really want?

Which architecture achieves that?

What are the trade-offs?

What can my application tolerate? (can I change it?)

Client

Pooler

Query engine

Storage manager

Disk

Logical data layer

Data files, WAL

Questions?
Marco.slot@gmail.com

	Slide 1: PostgreSQL Distributed
	Slide 4: Today’s talk on PostgreSQL Distributed
	Slide 5: Single machine PostgreSQL
	Slide 6: Single machine PostgreSQL?
	Slide 7: PostgreSQL Distributed (in the cloud)
	Slide 9: Goals of distributed database architecture
	Slide 10: PostgreSQL Distributed Layers
	Slide 11: Practical view of Distributed PostgreSQL
	Slide 12: Two questions: 1) What are the trade-offs? 2) For which workloads?
	Slide 13: The perils of latency: Synchronous protocol
	Slide 14: The perils of latency: Connection limits
	Slide 15: Network-attached block storage
	Slide 16: Network-attached block storage
	Slide 17: Network-attached storage
	Slide 18: Read replicas
	Slide 19: Read replicas
	Slide 21: Scaling read throughput
	Slide 28: Eventual read-your-writes consistency
	Slide 29: No monotonic read consistency
	Slide 30: Poor cache usage
	Slide 31: Read scaling trade-offs
	Slide 45: DBMS-optimized storage
	Slide 46: DBMS-optimized storage
	Slide 47: DBMS-optimized storage trade-offs
	Slide 48: Transparent sharding
	Slide 49: Transparent sharding
	Slide 50: Single shard queries for operational workloads
	Slide 51: Data loading in sharded system
	Slide 52: Compute-heavy queries
	Slide 53: Multi-shard queries for analytical workloads
	Slide 54: Multi-shard queries for operational workloads
	Slide 55: Multi-shard queries for analytical workloads
	Slide 56: Sharding trade-offs
	Slide 57: Active-active
	Slide 58: Active-active / n-way replication
	Slide 59: Active-active / n-way replication
	Slide 61: Active-active trade-offs
	Slide 62: Distributed SQL
	Slide 63: Distributed key-value storage with SQL (DSQL)
	Slide 64: Distributed key-value storage trade-offs
	Slide 65: Conclusion
	Slide 67: Questions?

