
Multi-threaded PostgeSQL?
Heikki Linnakangas



Why now?

- Started as a hallway conversation at PGCon 2023
- Followed up on the mailing list: 

https://www.postgresql.org/message-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi

https://www.postgresql.org/message-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi


Status

- There is no patch
- Some preliminary refactoring at Refactoring backend fork+exec code thread
- Some work on annotating global variables at 

https://github.com/hlinnaka/postgres/tree/threading
- I might work on this, or not. No promises!

https://www.postgresql.org/message-id/7a59b073-5b5b-151e-7ed3-8b01ff7ce9ef%40iki.fi
https://github.com/hlinnaka/postgres/tree/threading


Current multi-process architecture

Shared memory

Process 1

Process 2

Process 3

Process 4



What’s in shared memory?  (1 / 3)
    /*
     * Size of the Postgres shared-memory block is estimated via moderately-
     * accurate estimates for the big hogs, plus 100K for the stuff that's too
     * small to bother with estimating.
     *
     * We take some care to ensure that the total size request doesn't
     * overflow size_t.  If this gets through, we don't need to be so careful
     * during the actual allocation phase.
     */
    size = 100000;
    size = add_size(size, PGSemaphoreShmemSize(numSemas));
    size = add_size(size, SpinlockSemaSize());
    size = add_size(size, hash_estimate_size(SHMEM_INDEX_SIZE,sizeof(ShmemIndexEnt)));
    size = add_size(size, dsm_estimate_size());
    size = add_size(size, BufferShmemSize());
    size = add_size(size, LockShmemSize());
    size = add_size(size, PredicateLockShmemSize());
    size = add_size(size, ProcGlobalShmemSize());
    size = add_size(size, XLogPrefetchShmemSize());
    size = add_size(size, VarsupShmemSize());
    size = add_size(size, XLOGShmemSize());
    size = add_size(size, XLogRecoveryShmemSize());
    size = add_size(size, CLOGShmemSize());
    size = add_size(size, CommitTsShmemSize());
    size = add_size(size, SUBTRANSShmemSize());
    size = add_size(size, TwoPhaseShmemSize());



What’s in shared memory? (2 / 3)
    size = add_size(size, BackgroundWorkerShmemSize());
    size = add_size(size, MultiXactShmemSize());
    size = add_size(size, LWLockShmemSize());
    size = add_size(size, ProcArrayShmemSize());
    size = add_size(size, BackendStatusShmemSize());
    size = add_size(size, SInvalShmemSize());
    size = add_size(size, PMSignalShmemSize());
    size = add_size(size, ProcSignalShmemSize());
    size = add_size(size, CheckpointerShmemSize());
    size = add_size(size, AutoVacuumShmemSize());
    size = add_size(size, ReplicationSlotsShmemSize());
    size = add_size(size, ReplicationOriginShmemSize());
    size = add_size(size, WalSndShmemSize());
    size = add_size(size, WalRcvShmemSize());
    size = add_size(size, PgArchShmemSize());
    size = add_size(size, ApplyLauncherShmemSize());
    size = add_size(size, BTreeShmemSize());
    size = add_size(size, SyncScanShmemSize());
    size = add_size(size, AsyncShmemSize());
    size = add_size(size, StatsShmemSize());
    size = add_size(size, WaitEventExtensionShmemSize());
#ifdef EXEC_BACKEND
    size = add_size(size, ShmemBackendArraySize());
#endif

    /* include additional requested shmem from preload libraries */
    size = add_size(size, total_addin_request);



What’s in shared memory? (3 / 3)

Dynamic Shared Memory for communication between parallel workers:

- Parallel sort state
- hash table for hash joins
- sharing record type cache
- Logical replication workers
- pgstat



Multi-threaded architecture

- Thread per connection

             Process

Thread 1

Thread 2

Thread 3

Thread 4



What’s the big difference?

Process-per-connection Thread-per-connection

Address space Per-process Shared

Shared data structures Tedious Easy



Benefits, immediate

Performance:

- Fewer TLB misses, maybe
- Less page table overhead



Benefits, long-term

Makes developing these things easier:

- Cheaper connections, built-in “connection pool”
- Shared relcache, plan cache
- Resizing fixed-size shared memory areas

- Shared_buffers, max_locks_per_transactions etc.
- Changing settings without restart
- Track snapshots that are in use to vacuum more aggressively
- EXPLAIN ANALYZE on the fly
- Limiting memory usage per session / connection



Objections

- It’s not worth the effort
- Too much incompatibility, think of extensions. python 2 vs 3
- It will introduce lots of bugs
- Multi-process gives better isolation



Objection: It’s not worth the effort

If that’s true, then it won’t happen

Wrong question to ask:

This is open source, people spend their time on what they decide is worth it



Objection: Too much incompatibility

- We don’t want a python 2 vs python 3 situation with the ecosystem
- Even within the core project, there should be no massive disruption to how to 

you deploy and administer



Objection: It will introduce lots of bugs

For the record, I think this will be a disaster. There is far too much
code that will get broken, largely silently, and much of it is not
under our control.

regards, tom lane

- I hope not!
- Need a beta period



Objections

- It’s not worth the effort
- Too destabilizing, think of extensions. python 2 vs 3
- It will introduce lots of bugs
- Multi-process gives better isolation



Objection: Multi process gives better isolation

- Chrome uses a process per tab for isolation

In PostgreSQL, it doesn’t give as much isolation as you might hope:

- If one process crashes, all other processes are killed
- Stomping over shared memory can already cause corruption-at-a-distance

- Multiple processes are easier to work with in debugger, strace, top etc.



Objection: Memory leaks will be worse

- We’re pretty good at not leaking resources. MemoryContexts and 
ResourceOwners work great.

- We only recently fixes a session-lifetime leak in LLVM



Multi-process enforces discipline

- Multi-process architecture forces discipline on data structures that are shared 
across processes

- It forces the discipline by making it so painful that you don’t want to do it.
- There are other ways, like naming conventions to enforce discipline



Previous attempts

- Early Windows port
- https://github.com/cmu-db/peloton/wiki/Postgres-Modifications (2015)
- https://github.com/postgrespro/postgresql.pthreads (2018)

https://github.com/cmu-db/peloton/wiki/Postgres-Modifications
https://github.com/postgrespro/postgresql.pthreads


Other projects that have made the switch

- Apache2
- MPM (Multi-Processing Modules), prefork, worker, or event

- Oracle
- Firebird



Here’s the plan!



The Plan

- For each connection, launch thread instead of process
- Annotate all global variables
- Add flags for extensions to declare if they’re thread-safe
- Rewrite some subsystems



Session local state

- Currently in global variables
- Convert to thread-local variables
- Or gather them all to a Session struct



Extensions

- Extensions need a transition period, independently of PostgreSQL
- Add a flag to control file:

- Requires processes
- Requires threads
- Works in either model

- Need tools for checking for re-entrant
- Static analysis tool to catch global variables
- Tests with concurrency



Rewrite some subsystems

Some subsystems will need to work differently in multi-threaded model:

- Virtual file descriptors (fd.c)
- Inter-process signals (SIGUSR1, SIGHUP etc)
- Launching new connections
- Postmaster restart_on_crash



Transition period

- First version will be buggy
- Extensions need time to catch up
- Need a transition period, where you can choose with a GUC

- 2 years? 5 years?
- IMHO the goal has to be to eventually remove the multi-process mode, or this 

is not worth it



Then what?



Reap the benefits

- Simpler parallel worker IPC
- Get rid of DSM, DSA, replica with plain palloc()s + lwlocks

- Share Relcache, catcaches, plan caches
- Allocate temp buffers more flexibly (or move to shared buffers)



Beyond thread-per-connection

- Thread pools, queuing
- Thread per core
- Shard per core (ScyllaDB)
- Async execution

- Have some of this in FDWs already
- Would help to parallelize I/O in more places



TODO

- Global variables
- Extensions
- Transition period
- PIDs in user-facing APIs (pg_terminate_backend(<pid>), query cancellation 

message in client protocol)
- Signals between backend processes
- setlocale() -> uselocale()
- python is single-threaded



Thank you!

      Q & A

pgsql-hackers thread: 
https://www.postgresql.org/message-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi

https://www.postgresql.org/message-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi

