Multi-threaded PostgeSQL?

Heikki Linnakangas

NEON

Why now?

- Started as a hallway conversation at PGCon 2023

- Followed up on the mailing list:
https://www.postgresql.org/messaqge-id/31cc6df9-53fe-3cd9-afbb-ac0d801163f4@iki.fi

https://www.postgresql.org/message-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi

NEON

Status

- There is no patch

- Some preliminary refactoring at Refactoring backend fork+exec code thread
- Some work on annotating global variables at
https://github.com/hlinnaka/postgres/tree/threading

- | might work on this, or not. No promises!

https://www.postgresql.org/message-id/7a59b073-5b5b-151e-7ed3-8b01ff7ce9ef%40iki.fi
https://github.com/hlinnaka/postgres/tree/threading

Current multi-process architecture

NEON

Process 1

Process 2

Process 3

Process 4

Shared memory

What's in shared memory? (1/3)

*
*
*
*
*
*
*
*
*

/

size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size

overflow size t.

100000;

add size(size,
add size(size,
add _size(size,
add_size(size,
add_size(size,
add_size(size,
add_size(size,
add_size(size,
add size(size,
add size(size,
add _size(size,
add_size(size,
add_size(size,
add_size(size,
add_size(size,
add_size(size,

~ e~~~ o~~~

Size of the Postgres shared-memory block is estimated via moderately-
accurate estimates for the big hogs, plus 100K for the stuff that's too
small to bother with estimating.

We take some care to ensure that the total size request doesn't
If this gets through, we don't need to be so careful
during the actual allocation phase.

PGSemaphoreShmemSize (numSemas)) ;
SpinlockSemaSize());

hash estimate size (SHMEM INDEX SIZE, sizeof (ShmemIndexEnt))):;
dsm_estimate size());
BufferShmemSize()) ;
LockShmemSize ()) ;
PredicatelLockShmemSize ()) ;
ProcGlobalShmemSize ()) ;
XLogPrefetchShmemSize ()) ;
VarsupShmemSize ()) ;
XLOGShmemSize ()) ;
XLogRecoveryShmemSize ()) ;
CLOGShmemSize ()) ;
CommitTsShmemSize ()) ;
SUBTRANSShmemSize ()) ;
TwoPhaseShmemSize ()) ;

NEON

What's in shared memory? (2 / 3)

size =

size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size

add _size(size,
add size(size,
add size(size,
add _size (size,
add _size(size,
add size(size,
add size(size,
add _size (size,
add _size(size,
add size(size,
add size(size,
add _size (size,
add _size(size,
add size(size,
add size(size,
add _size (size,
add _size(size,
add size(size,
add size(size,

(

(

= add _size(size,
size =

add size(size,

#ifdef EXEC BACKEND

size
fendif

add_size(size,

/* include additional

size

add size(size,

BackgroundWorkerShmemSize ()) ;
MultiXactShmemSize ()) ;
LWLockShmemSize ()) ;
ProcArrayShmemSize ()) ;
BackendStatusShmemSize ()) ;
SInvalShmemSize ());
PMSignalShmemSize ());
ProcSignalShmemSize ()) ;
CheckpointerShmemSize ()) ;
AutoVacuumShmemSize ()) ;
ReplicationSlotsShmemSize ())
ReplicationOriginShmemSize ()
WalSndShmemSize ()) ;
WalRcvShmemSize ()) ;
PgArchShmemSize ());
ApplyLauncherShmemSize ()) ;
BTreeShmemSize ()) ;
SyncScanShmemSize ()) ;
AsyncShmemSize ()) ;
StatsShmemSize ()) ;
WaitEventExtensionShmemSize ()) ;

)i

ShmemBackendArraySize())

requested shmem from preload libraries */
total addin request);

NEON

NEON

What's in shared memory? (3 / 3)

Dynamic Shared Memory for communication between parallel workers:

- Parallel sort state

- hash table for hash joins

- sharing record type cache
- Logical replication workers
- pgstat

Multi-threaded architecture

Thread per connection

NEON

Thread 1

Thread 2

Thread 3

Thread 4

Process

NEON

What's the big difference?

Process-per-connection Thread-per-connection
Address space Per-process Shared

Shared data structures Tedious Easy

NEON
Benefits, immediate

Performance;

- Fewer TLB misses, maybe
- Less page table overhead

Benefits, long-term

Makes developing these things easier:

Cheaper connections, built-in “connection pool”
Shared relcache, plan cache

Resizing fixed-size shared memory areas
Shared_buffers, max_locks per_transactions etc.

Changing settings without restart
Track snapshots that are in use to vacuum more aggressively
EXPLAIN ANALYZE on the fly

Limiting memory usage per session / connection

NEON

NEON
Obijections

- It’s not worth the effort

- Too much incompatibility, think of extensions. python 2 vs 3
- It will introduce lots of bugs

- Multi-process gives better isolation

NEON
Obijection: It's not worth the effort

If that’s true, then it won’t happen

Wrong question to ask:

This is open source, people spend their time on what they decide is worth it

NEON
Obijection: Too much incompatibility

- We don’t want a python 2 vs python 3 situation with the ecosystem
- Even within the core project, there should be no massive disruption to how to
you deploy and administer

NEON
Obijection: It will introduce lots of bugs

For the record, | think this will be a disaster. There is far too much
code that will get broken, largely silently, and much of it is not
under our control.

regards, tom lane

- | hope not!
- Need a beta period

NEON
Obijections

- It's not worth the effort

- Too destabilizing, think of extensions. python 2 vs 3
- It will introduce lots of bugs

- Multi-process gives better isolation

NEON
Obijection: Multi process gives better isolation

- Chrome uses a process per tab for isolation

In PostgreSQL, it doesn’t give as much isolation as you might hope:

- If one process crashes, all other processes are killed
- Stomping over shared memory can already cause corruption-at-a-distance

- Multiple processes are easier to work with in debugger, strace, top etc.

NEON
Objection: Memory leaks will be worse

- We're pretty good at not leaking resources. MemoryContexts and
ResourceOwners work great.
- We only recently fixes a session-lifetime leak in LLVM

NEON

Multi-process enforces discipline

- Multi-process architecture forces discipline on data structures that are shared

across processes
- It forces the discipline by making it so painful that you don’t want to do it.

- There are other ways, like naming conventions to enforce discipline

[l NEON
Previous attempts
- Early Windows port

- https://qithub.com/cmu-db/peloton/wiki/Postgres-Modifications (2015)
- https://github.com/postgrespro/postgresqal.pthreads (2018)

https://github.com/cmu-db/peloton/wiki/Postgres-Modifications
https://github.com/postgrespro/postgresql.pthreads

NEON
Other projects that have made the switch

- Apache2

MPM (Multi-Processing Modules), prefork, worker, or event
- Oracle

- Firebird

Here's the plan!

NEON

The Plan

- For each connection, launch thread instead of process

- Annotate all global variables
- Add flags for extensions to declare if they're thread-safe

- Rewrite some subsystems

NEON
Session local state

- Currently in global variables
- Convert to thread-local variables
- Or gather them all to a Session struct

v 14 mEEE @ src/backend/access/table/[EREER.c (O

1 @8 -45,8 +45,8 @9 3
45 45 #define PARALLEL_SEQSCAN_MAX_CHUNK_SIZE 8192
46 6
47 47 /* GUC variables */
48 - char *default_table_access_method = DEFAULT_TABLE_ACCESS_METHOD;
49 - bool synchronize_seqscans = true;
48 + session_guc char *default_table_access_method = DEFAULT TABLE_ACCESS_METHOD;

49 + session_guc bool synchronize_seqscans = true;

NEON
Extensions

- Extensions need a transition period, independently of PostgreSQL
- Add a flag to control file:

- Requires processes
- Requires threads
- Works in either model
- Need tools for checking for re-entrant

- Static analysis tool to catch global variables
- Tests with concurrency

NEON
Rewrite some subsystems

Some subsystems will need to work differently in multi-threaded model:

- Virtual file descriptors (fd.c)

- Inter-process signals (SIGUSR1, SIGHUP etc)
- Launching new connections

- Postmaster restart_on_crash

NEON
Transition period

- First version will be buggy
- Extensions need time to catch up

- Need a transition period, where you can choose with a GUC
2 years? 5 years?
- IMHO the goal has to be to eventually remove the multi-process mode, or this
is not worth it

Then what?

N

EON

NEON

Reap the benefits

- Simpler parallel worker IPC
Get rid of DSM, DSA, replica with plain palloc()s + Iwlocks

- Share Relcache, catcaches, plan caches
- Allocate temp buffers more flexibly (or move to shared buffers)

NEON
Beyond thread-per-connection

- Thread pools, queuing
- Thread per core
- Shard per core (ScyllaDB)

- Async execution
Have some of this in FDWs already
Would help to parallelize 1/0 in more places

NEON

TODO

- Global variables

- Extensions

- Transition period

- PIDs in user-facing APIs (pg_terminate backend(<pid>), query cancellation
message in client protocol)

- Signals between backend processes

- setlocale() -> uselocale()

- python is single-threaded

. NEON

Thank you!

Q&A

pgsql-hackers thread:
https://www.postgresal.org/messaqge-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi

https://www.postgresql.org/message-id/31cc6df9-53fe-3cd9-af5b-ac0d801163f4@iki.fi

