
Blazingly Fast
Message Queue
on Postgres with
Rust
Adam Hendel <adam@tembo.io>, @adamhendel, github@chuckhend
Founding Engineer, Tembo.io

mailto:samay@tembo.io

Agenda

Use cases and origin

PGMQ is not the first queue…

API and operations overview

Preliminary Benchmarks

Conclusion

01

02

03

04

05

PGConf EU 2023

Tembo Cloud Platform
● Control-plane, data-plane, queues in between → lead to development of queue

● Rust producer, rust consumer, lead to a Rust library for queue on Postgres

● Later moved from Rust lib into a Postgres extension using PGRX

PGConf EU 2023

Control-plane

(backend)

Data-plane

(managed
postgres

instances)

Postgres

Events queue

Requests
queuepgmq.send()

pgmq.read()
pgmq.archive()

pgmq.send()
pgmq.read()
pgmq.archive()

pgmq runs behind pg_later
PGConf EU 2023

https://github.com/tembo-io/pg_later

Batch processing

PGConf EU 2023 https://github.com/tembo-io/pgmq

Webserver Batch job
processor Postgresqueueclient

Single message
Batch insert or
aggregate

https://github.com/tembo-io/pgmq

PGMQ Features
● Lightweight

○ Zero external processes or background worker, just an extension w/ functions

○ Low operational maintenance

● Exactly-once delivery, within visibility timeout

● Simple SQL API

○ Developer friendly API compatible with any language with a Postgres driver

○ Supports either Delete() or Archive() (retention) of messages

○ Single, batch, and long poll() API

● Build using pgrx, framework for developing Postgres extensions in Rust. Started as a Rust

crate then evolved into a Postgres extension.

PGConf EU 2023

https://github.com/pgcentralfoundation/pgrx

PGMQ is not the
first…

Queues on Postgres
● PGQ - the OG queues on Postgres?

● Postgres Message Queue - (SQL extension)

● River - https://brandur.org/river (Go)

● PgBoss - https://github.com/timgit/pg-boss (Javascript)

● Crunchy - https://www.crunchydata.com/blog/message-queuing-using-native-postgresql

● Dagster - https://dagster.io/blog/skip-kafka-use-postgres-message-queue

● And many more HN articles, projects

PGConf EU 2023

PGMQ has lowest complexity, lowest operational maintenance, and accessible to
all languages

https://pypi.org/project/pgqueue/
https://github.com/rpdelaney/pg-message-queue
https://brandur.org/river
https://github.com/timgit/pg-boss
https://www.crunchydata.com/blog/message-queuing-using-native-postgresql
https://dagster.io/blog/skip-kafka-use-postgres-message-queue

PGMQ API Overview

Visibility Timeout (VT) - Inspired by SQS and RSMQ

PGConf EU 2023

- Timestamp at which a message can be read by consumers

- Consumer sets VT to a time in the future
- Message unable to be consumed until now() > VT
- Message guaranteed to be read “exactly-once” when consumer delete() or

archive() that message before VT elapses.

- Using a VT means no additional maintenance worker
- Autovacuum worker handles bloat
- VT by design is checked on read()

- At-least-once delivery in effect after VT expires

Create a queue
PGConf EU 2023

select pgmq.create('prague');

CREATE {maybe_unlogged} TABLE IF NOT EXISTS pgmq.q_{name} (
 msg_id BIGINT PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 read_ct INT DEFAULT 0 NOT NULL,
 enqueued_at TIMESTAMP WITH TIME ZONE DEFAULT now() NOT NULL,
 vt TIMESTAMP WITH TIME ZONE NOT NULL,
 message JSONB

CREATE INDEX IF NOT EXISTS q_{name}_vt_idx ON pgmq.q_{name} (vt ASC);

…create archive table..create archive index…etc.

Sends are inserts

PGConf EU 2023

select pgmq.send(queue_name => 'prague', msg => '{"hello": "world0"}');

INSERT INTO pgmq.q_{queue_name} (vt, message)
VALUES {vt, message..}

 RETURNING msg_id;

Each queue is 1 table

PGConf EU 2023

Reads….
PGConf EU 2023

select * from pgmq.read(
 queue_name => 'prague',
 vt => 30,
 qty => 1
);

Reads do all the work
PGConf EU 2023

Why is there a CTE? this…

WITH cte AS
 (
 SELECT msg_id
 FROM pgmq.q_{queue_name}
 WHERE vt <= clock_timestamp()
 ORDER BY msg_id ASC
 LIMIT {qty}
 FOR UPDATE SKIP LOCKED
)
UPDATE pgmq.q_{queue_name} t
SET
 vt = clock_timestamp() + interval '{vt} seconds',
 read_ct = read_ct + 1
FROM cte
WHERE t.msg_id=cte.msg_id
RETURNING *;

https://github.com/feikesteenbergen/demos/blob/master/bugs/update_limit_bug.txt

Deletes are simple

PGConf EU 2023

select pgmq.delete(
queue_name => 'prague',
msg_id => 1

);

DELETE FROM pgmq.q_{queue_name}
WHERE msg_id = {msg_id}
RETURNING msg_id;

Archive is a delete + insert

PGConf EU 2023

select pgmq.archive(
queue_name => 'prague',
msg_id => 2

);

WITH archived AS (
 DELETE FROM pgmq.q_{queue_name}
 WHERE msg_id = ANY(msg_id)
 RETURNING msg_id, vt, read_ct, enqueued_at, message
)
INSERT INTO pgmq.q_{queue_name} (msg_id, vt, read_ct,
enqueued_at, message)
SELECT msg_id, vt, read_ct, enqueued_at, message
FROM archived
RETURNING msg_id;

PGMQ API

PGConf EU 2023

pgmq.pop() – read and delete, at-most-once delivery

pgmq.set_vt() – change the VT of an existing message

pgmq.purge_queue() – delete all the messages on a queue

more…

See docs for complete API
https://tembo-io.github.io/pgmq/api/sql/functions/

https://tembo-io.github.io/pgmq/api/sql/functions/

Early Benchmarks

(more to come)

1 hour. 16 vCPU, 32GB RAM, (22 byte message) 5 producers, 40 consumers – batch size 10
Non-partitioned queue

PGConf EU 2023

1 hour. 16 vCPU, 32GB RAM, (1KB message) 5 producers, 40 consumers – batch size 10
Non-partitioned queue

PGConf EU 2023

1 hour. 16 vCPU, 32GB RAM, (22 byte message) 10 producers x batch (1), 30 consumers batch(10)
Non-partitioned queue

PGConf EU 2023

Autovacuum disabled (yikes)

PGConf EU 2023

Conclusion

PGConf EU 2023

- These are early benchmarks. Stay tuned for more benches including
partition queues, resource consumption, etc.

- Vacuum is critical
- Low enough latency, high enough throughput for most workloads
- Keep message sizes small
- Tune batch size to the use case
- Compute isolation for high throughput workloads

Recommended MQ Stack
pooler

● HTTP interface w/ authentication – PostgREST

● Connection pooler - pgbouncer

● Metrics/Alert - queue length, message age, total messages

● Extensions – pgmq, pg_partman

● Postgresql.conf - mostly shared buffers, autovacuum

● Open Source Postgres, dedicated to MQ workload

PGConf EU 2023

Config

Postgres

HTTP

extensions

https://github.com/tembo-io/tembo/blob/main/tembo-operator/src/stacks/templates/message_queue.yaml

metrics

https://postgrest.org/en/stable/
https://www.pgbouncer.org/
https://github.com/tembo-io/tembo/blob/1cfb78b813a1b11fbbdd622fcb65e6b7113cd7db/tembo-operator/src/stacks/templates/message_queue.yaml#L80
https://github.com/tembo-io/pgmq
https://github.com/pgpartman/pg_partman
https://github.com/tembo-io/tembo/blob/1cfb78b813a1b11fbbdd622fcb65e6b7113cd7db/tembo-operator/src/stacks/templates/message_queue.yaml#L99
https://tembo.io/blog/optimizing-postgres-auto-vacuum/
https://github.com/tembo-io/tembo/blob/main/tembo-operator/src/stacks/templates/message_queue.yaml

Next…
Looking for feedback and contributors!

● Benchmarking - partitioned queues, LARGE message sizes, tuning, etc.

● Bridge - connect pgmq to external queues (PG, SQS, RabbitMQ, Kafka, etc)

● alert/notify - consumers receive messages without continuously polling

● Serialization options - MessagePack, Protobuf, Avro…

PGConf EU 2023

Community Contributors
https://github.com/tembo-io/pgmq/graphs/contributors

● Felipe Stival - https://github.com/v0idpwn

● Craig Pastro - https://github.com/craigpastro

● Dorian Hoxha https://github.com/ddorian

PGConf EU 2023

https://github.com/tembo-io/pgmq/graphs/contributors
https://github.com/v0idpwn
https://github.com/craigpastro
https://github.com/ddorian

Demo?

PGConf EU 2023

Thank you!
Give us a star!
https://github.com/tembo-io/pgmq

Questions?
Email me at adam@tembo.io
Tweet at @adamhendel

https://github.com/tembo-io/pgmq
mailto:adam@tembo.io

