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● More than two decades of professional software 
development.

● Engineering Lead for PostgreSQL at Percona:
○ pg_stat_monitor
○ And, yes, we are working on TDE (Transparent Data Encryption).

● Prior to joining Percona, I had worked for some other 
PostgreSQL companies:
○ HighGo, and 
○ EnterpriseDB.

About Myself

2



Presentation Outline
The expected takeaways from this session.
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● Transactions and Failures
● A System Without WAL
● WAL in PostgreSQL
● The Internals
● Following Transaction Processing
● Checkpoint
● Backup and PITR

Outline
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Making the database ACID compliance
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Transactions and 
Failures
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● Transaction
○ Logical errors
○ Internal state errors

● System
○ Database server crashed
○ Host OS crashed

● Hardware
○ Recoverable failures; e.g. power loss

● Storage Failure
○ Oops. Nothing we can do here unless we have a backup of 

the data.

The Types of Failures
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Let’s see if we can 
somehow avoid 
data loss during 
these failures.
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Challenge in Making Data Persistent
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DML happens 
here first

How and when 
does it get to 
permanent 

storage?

Storage of individual 
tuples vs group of 
tuples in a block?
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● RAM isn’t really permanent storage.
● Data is updated in RAM first, and then written to disk.
● Reading and writing data in blocks is faster.

○ Changes performed on the data must be saved to persistent 
storage.

● The expectation is that when we tell a backend that their 
transaction is committed, the data is written to 
persistent storage.

The Common Sense Factors
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● Can we write this block onto persistent storage?
● When should we write this block onto persistent storage?

Challenge with Data Blocks (Pages)
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To FORCE or not 
to FORCE?

To steal or not to 
STEAL?



A System Without WAL
Durability can be ensure in many ways.
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● Write the data page whenever a transaction makes a 
change.

● Shadow copy.

Possible Options
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● PG < 7.1 - PostgreSQL could not guarantee
○ Consistency

■ Index tuples may point to non-existent table rows
■ Index tuples lost in split operations
■ Corrupt index or table pages because of partial writes.

○ All open data files had to be fsync’ed on every commit.
■ Now that’s a serious performance issue.

Saving Individual Commits
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STEAL FORCE
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● Primary page table point to valid pages.
● A transaction executing DML creates a copy of the page 

table (shadow).
○ Makes a copy of the pages where change is required.
○ Makes the changes.
○ When it commits, the database root is changed to point to 

the shadow page table.

Shadow Copy
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NO STEAL FORCE



WAL in PostgreSQL
It must bring the system back to the same stable state it was before the crash.
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● ARIES
○ Algorithms for Recovery and Isolation Exploiting Semantics

● It mandates:
○ Write Ahead Logging

■ WAL data is written to disk before data page is written.
○ REDO

■ It is able to retrace the actions to bring the system back to the same 
stable it was before crashing.

○ UNDO
■ Any incomplete transactional data written to persistent storage can be 

undone.

The Strategy
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NO FORCESTEAL
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● Write Ahead Log
■ Introduced in version 7.1 in 2001.
■ With REDO, and without UNDO.
■ Introduced checkpoint as well.

○ Added UNDO in 7.4
● Version 10 changed the directory to pg_wal from 

pg_xlog.
○ Fun Fact: rm -rf data/*log*

● Not just relations but indexes too!

WAL in PostgreSQL
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Pages and WAL under the hood.
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The Internals
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● Refers to a location in the log file.
○ LSN is a 64 bit unsigned integer. In the PG code, it is: 

● LSN Format:
○ 00000000 00000000 00000000

● Some useful functions:
○ pg_current_wal_lsn
○ pg_walfile_name

Log Sequence Number (LSN)
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typedef uint64 XLogRecPtr;

Timeline ID

FF+1
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● Buffer Tag
○ Identifies which disk block the buffer contains. It’s internally 

defined as a structure consisting of:
■ Tablespace OID
■ Database OID
■ Relation file number
■ Relation fork number
■ Block number in the relation.

● Buffer Descriptor
○ Location of a buffer page in the buffer pool slot.
○ Contains Buffer Tag, index, and state (flags, refcount, etc).

Buffer Page
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Data Page Layout
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pd_lsn

pd_lower

pd_upper

pd_lower

pd_upper

PageHeaderData
pd_flags
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XLog API Functions
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● XLogBeginInsert
○ Must be called when you intend to add an xlog record.

● XLogRegisterData
○ Arbitrary data that in the WAL record that will be available to the redo 

routine.
● XLogRegisterBuffer

○ Add information about the buffer to the WAL record. Contains 
information to re-find the page during the redo routine.

● XLogRegisterBufData
○ Included data associated with a registered buffer.

● XLogInsert
○ Insert the WAL record.
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XLog Record Layout
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● Fixed-size header (XLogRecord)
○ Includes total length of the record, transaction ID and resource 

manager ID.
● Block Header (XLogRecordBlockHeader)

○ Block ID, fork flags and data length
● <zero or more block headers>
● Data Header (XLogRecordDataHeader[Short|Long])

○ ID and data length of the main data part.
● Block Data
● <zero or more block data>
● Main Data
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● Written immediately to WAL when a page is modified for 
the first time after a checkpoint.
○ Avoids torn pages.

● The entire page is added to the WAL record.
○ Space is saved by omitting the empty space in the page.
○ And also through compression of data.

● If compression is enabled, a compression header is 
added to the xlog record.
○ It contains the size of the hole in the page.

Full Page Images
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● The resource managers are used to identify the type of 
actions so that required routines may be invoked.
○ For more details, see the file “rmgrlist.h”.

● Resource manager entry for “heap”:

● We’ll see how this is used in heap_redo.

WAL Resource Manager List
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PG_RMGR(RM_HEAP_ID, "Heap", heap_redo, heap_desc, heap_identify,
        NULL, NULL, heap_mask, heap_decode)
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WAL Resource Manager List
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Category Resource Manager ID

Heap RM_HEAP_ID, RM_HEAP2_ID

Indexes RM_BTREE_ID, RM_HASH_ID, RM_GIN_ID, RM_GIST_ID, 
RM_SPGIST_ID, RM_BRIN_ID

Replication RM_STANDBY_ID, RM_REPLORIGIN_ID, RM_GENERIC_ID, 
RM_LOGICALMSG_ID

Sequences RM_SEQ_ID

Storage RM_SMGR_ID, RM_DBASE_ID, RM_TBLSPC_ID, RM_RELMAP_ID

Transactions RM_XACT_ID, RM_MULTIXACT_ID, RM_XLOG_ID, RM_CLOG_ID, 
RM_COMMIT_TS_ID



How the elements of WAL get engaged in transaction processing.
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Following Transaction 
Processing
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● Let’s consider a table “foo” with only one integer column.

● Access method is “heap”
○ StartTransactionCommand
○ heap_insert function is called. Internally, it does the following:

■ GetCurrentTransactionId -> ExtendCLOG
■ Prepare the Tuple [heap_prepare_insert]
■ Get the buffer from the buffer pool [RelationGetBufferForTuple]
■ Enter critical section
■ …

Running Insert Transaction Command
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INSERT INTO foo VALUES(1);
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■ Add the Tuple to the Page [RelationPutHeapTuple]
■ If page is all visible,

● Unset the PD_ALL_VISIBLE flag in the page header

● Update visibility map

■ Mark the Page as Dirty [MarkBufferDirty]
■ Add the WAL record by calling:

● Begin Insert

● Register Data [CTID and flags]

● Register Buffer [The buffer containing the new tuple]

● Register Buffer Data [Trimmed tuple header]

● Register Buffer Data [Tuple data]

● XLog Insert [RM_HEAP_ID, flags | XLOG_HEAP_INSERT]

Running Insert Transaction Command
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■ Update the pd_lsn to match the WAL lsn. [PageSetLSN]
■ End critical section [Nothing to be done on the page]
■ XactLogCommitRecord
■ TransactionIdCommitTree

● The transaction is committed now.
● WAL Writer process is triggered by:

○ Commit or Abort
○ wal_writer_delay

Running Insert Transaction Command
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● We created and committed a transaction.
● A tuple was inserted into a heap page.

○ heap_insert added the tuple and generated the WAL record.
■ The page was marked as dirty.
■ Sets pd_lsn to point to the new LSN location; start of the next record.

○ Transaction was marked committed.
■ WAL record was generated for it.

● The data page is NOT written to disk yet.

Let’s Recap
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XLog 
Record Dataxl_heap_

header
xl_heap_

insert
XLog 

Record Commit



Checkpoint and PITR
Durability and recovery
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● The primary functions are:
○ Cleaning dirty pages in the buffer pool.
○ Preparing server for recovery.

● When a “checkpoint” starts, it needs to flush all the dirty 
pages to disk.
○ But before it can do that, it saves the current WAL insert 

location.
● After completing the checkpoint, it writes into the WAL a 

checkpoint record with the redo location.

Checkpoint
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Following REDO
● Resource manager entry for “heap”

● heap_redo function is called.
○ Gets the opcode from the XLogRecord and calls the required 

function. The opcode is XLOG_HEAP_INSERT in this case.
■ heap_xlog_insert in this case.

● Before changes on the page are made, LSN of the record 
is compared with pd_lsn of the page. Change is only IFF:
○ pd_lsn < LSN of the WAL Record
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PG_RMGR(RM_HEAP_ID, "Heap", heap_redo, heap_desc, heap_identify,
        NULL, NULL, heap_mask, heap_decode)
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● Very similar to the recovery process except for:
○ It reads the WAL files from an archive directory.
○ The location of the redo point is read from a backup label file.

PITR
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TDE

TDE is coming.

Feel free to reach out to me or any of the Percona 
folks here if you want to discuss TDE (transparent 
data encryption). 

GitHub



hamid.akhtar@percona.com
https://www.linkedin.com/in/engineeredvirus/

Thank you!
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