
Write-Ahead Logging (WAL):
The Internals of Reliability and Recovery

1

Hamid Akhtar,
Engineering Lead, PostgreSQL

Want to know more about 
Percona Software For Postgres?



© Copyright 2023 Percona® LLC. All rights reserved

● More than two decades of professional software 
development.

● Engineering Lead for PostgreSQL at Percona:
○ pg_stat_monitor
○ And, yes, we are working on TDE (Transparent Data Encryption).

● Prior to joining Percona, I had worked for some other 
PostgreSQL companies:
○ HighGo, and 
○ EnterpriseDB.

About Myself

2



Presentation Outline
The expected takeaways from this session.

3



© Copyright 2023 Percona® LLC. All rights reserved

● Transactions and Failures
● A System Without WAL
● WAL in PostgreSQL
● The Internals
● Following Transaction Processing
● Checkpoint
● Backup and PITR

Outline

4



Making the database ACID compliance

5

Transactions and 
Failures



© Copyright 2023 Percona® LLC. All rights reserved

● Transaction
○ Logical errors
○ Internal state errors

● System
○ Database server crashed
○ Host OS crashed

● Hardware
○ Recoverable failures; e.g. power loss

● Storage Failure
○ Oops. Nothing we can do here unless we have a backup of 

the data.

The Types of Failures

6

Let’s see if we can 
somehow avoid 
data loss during 
these failures.



© Copyright 2023 Percona® LLC. All rights reserved

Challenge in Making Data Persistent

7

DML happens 
here first

How and when 
does it get to 
permanent 

storage?

Storage of individual 
tuples vs group of 
tuples in a block?



© Copyright 2023 Percona® LLC. All rights reserved

● RAM isn’t really permanent storage.
● Data is updated in RAM first, and then written to disk.
● Reading and writing data in blocks is faster.

○ Changes performed on the data must be saved to persistent 
storage.

● The expectation is that when we tell a backend that their 
transaction is committed, the data is written to 
persistent storage.

The Common Sense Factors

8



© Copyright 2023 Percona® LLC. All rights reserved

● Can we write this block onto persistent storage?
● When should we write this block onto persistent storage?

Challenge with Data Blocks (Pages)

9

To FORCE or not 
to FORCE?

To steal or not to 
STEAL?



A System Without WAL
Durability can be ensure in many ways.

10



© Copyright 2023 Percona® LLC. All rights reserved

● Write the data page whenever a transaction makes a 
change.

● Shadow copy.

Possible Options

11



© Copyright 2023 Percona® LLC. All rights reserved

● PG < 7.1 - PostgreSQL could not guarantee
○ Consistency

■ Index tuples may point to non-existent table rows
■ Index tuples lost in split operations
■ Corrupt index or table pages because of partial writes.

○ All open data files had to be fsync’ed on every commit.
■ Now that’s a serious performance issue.

Saving Individual Commits

12

STEAL FORCE



© Copyright 2023 Percona® LLC. All rights reserved

● Primary page table point to valid pages.
● A transaction executing DML creates a copy of the page 

table (shadow).
○ Makes a copy of the pages where change is required.
○ Makes the changes.
○ When it commits, the database root is changed to point to 

the shadow page table.

Shadow Copy

13

NO STEAL FORCE



WAL in PostgreSQL
It must bring the system back to the same stable state it was before the crash.

14



© Copyright 2023 Percona® LLC. All rights reserved

● ARIES
○ Algorithms for Recovery and Isolation Exploiting Semantics

● It mandates:
○ Write Ahead Logging

■ WAL data is written to disk before data page is written.
○ REDO

■ It is able to retrace the actions to bring the system back to the same 
stable it was before crashing.

○ UNDO
■ Any incomplete transactional data written to persistent storage can be 

undone.

The Strategy

15

NO FORCESTEAL



© Copyright 2023 Percona® LLC. All rights reserved

● Write Ahead Log
■ Introduced in version 7.1 in 2001.
■ With REDO, and without UNDO.
■ Introduced checkpoint as well.

○ Added UNDO in 7.4
● Version 10 changed the directory to pg_wal from 

pg_xlog.
○ Fun Fact: rm -rf data/*log*

● Not just relations but indexes too!

WAL in PostgreSQL

16



Pages and WAL under the hood.

17

The Internals



© Copyright 2023 Percona® LLC. All rights reserved

● Refers to a location in the log file.
○ LSN is a 64 bit unsigned integer. In the PG code, it is: 

● LSN Format:
○ 00000000 00000000 00000000

● Some useful functions:
○ pg_current_wal_lsn
○ pg_walfile_name

Log Sequence Number (LSN)

18

typedef uint64 XLogRecPtr;

Timeline ID

FF+1



© Copyright 2023 Percona® LLC. All rights reserved

● Buffer Tag
○ Identifies which disk block the buffer contains. It’s internally 

defined as a structure consisting of:
■ Tablespace OID
■ Database OID
■ Relation file number
■ Relation fork number
■ Block number in the relation.

● Buffer Descriptor
○ Location of a buffer page in the buffer pool slot.
○ Contains Buffer Tag, index, and state (flags, refcount, etc).

Buffer Page

19



© Copyright 2023 Percona® LLC. All rights reserved

Data Page Layout

20

pd_lsn

pd_lower

pd_upper

pd_lower

pd_upper

PageHeaderData
pd_flags



© Copyright 2023 Percona® LLC. All rights reserved

XLog API Functions

21

● XLogBeginInsert
○ Must be called when you intend to add an xlog record.

● XLogRegisterData
○ Arbitrary data that in the WAL record that will be available to the redo 

routine.
● XLogRegisterBuffer

○ Add information about the buffer to the WAL record. Contains 
information to re-find the page during the redo routine.

● XLogRegisterBufData
○ Included data associated with a registered buffer.

● XLogInsert
○ Insert the WAL record.



© Copyright 2023 Percona® LLC. All rights reserved

XLog Record Layout

22

● Fixed-size header (XLogRecord)
○ Includes total length of the record, transaction ID and resource 

manager ID.
● Block Header (XLogRecordBlockHeader)

○ Block ID, fork flags and data length
● <zero or more block headers>
● Data Header (XLogRecordDataHeader[Short|Long])

○ ID and data length of the main data part.
● Block Data
● <zero or more block data>
● Main Data



© Copyright 2023 Percona® LLC. All rights reserved

● Written immediately to WAL when a page is modified for 
the first time after a checkpoint.
○ Avoids torn pages.

● The entire page is added to the WAL record.
○ Space is saved by omitting the empty space in the page.
○ And also through compression of data.

● If compression is enabled, a compression header is 
added to the xlog record.
○ It contains the size of the hole in the page.

Full Page Images

23



© Copyright 2023 Percona® LLC. All rights reserved

● The resource managers are used to identify the type of 
actions so that required routines may be invoked.
○ For more details, see the file “rmgrlist.h”.

● Resource manager entry for “heap”:

● We’ll see how this is used in heap_redo.

WAL Resource Manager List

24

PG_RMGR(RM_HEAP_ID, "Heap", heap_redo, heap_desc, heap_identify,
        NULL, NULL, heap_mask, heap_decode)



© Copyright 2023 Percona® LLC. All rights reserved

WAL Resource Manager List

25

Category Resource Manager ID

Heap RM_HEAP_ID, RM_HEAP2_ID

Indexes RM_BTREE_ID, RM_HASH_ID, RM_GIN_ID, RM_GIST_ID, 
RM_SPGIST_ID, RM_BRIN_ID

Replication RM_STANDBY_ID, RM_REPLORIGIN_ID, RM_GENERIC_ID, 
RM_LOGICALMSG_ID

Sequences RM_SEQ_ID

Storage RM_SMGR_ID, RM_DBASE_ID, RM_TBLSPC_ID, RM_RELMAP_ID

Transactions RM_XACT_ID, RM_MULTIXACT_ID, RM_XLOG_ID, RM_CLOG_ID, 
RM_COMMIT_TS_ID



How the elements of WAL get engaged in transaction processing.

26

Following Transaction 
Processing



© Copyright 2023 Percona® LLC. All rights reserved

● Let’s consider a table “foo” with only one integer column.

● Access method is “heap”
○ StartTransactionCommand
○ heap_insert function is called. Internally, it does the following:

■ GetCurrentTransactionId -> ExtendCLOG
■ Prepare the Tuple [heap_prepare_insert]
■ Get the buffer from the buffer pool [RelationGetBufferForTuple]
■ Enter critical section
■ …

Running Insert Transaction Command

27

INSERT INTO foo VALUES(1);



© Copyright 2023 Percona® LLC. All rights reserved

■ Add the Tuple to the Page [RelationPutHeapTuple]
■ If page is all visible,

● Unset the PD_ALL_VISIBLE flag in the page header

● Update visibility map

■ Mark the Page as Dirty [MarkBufferDirty]
■ Add the WAL record by calling:

● Begin Insert

● Register Data [CTID and flags]

● Register Buffer [The buffer containing the new tuple]

● Register Buffer Data [Trimmed tuple header]

● Register Buffer Data [Tuple data]

● XLog Insert [RM_HEAP_ID, flags | XLOG_HEAP_INSERT]

Running Insert Transaction Command

28



© Copyright 2023 Percona® LLC. All rights reserved

■ Update the pd_lsn to match the WAL lsn. [PageSetLSN]
■ End critical section [Nothing to be done on the page]
■ XactLogCommitRecord
■ TransactionIdCommitTree

● The transaction is committed now.
● WAL Writer process is triggered by:

○ Commit or Abort
○ wal_writer_delay

Running Insert Transaction Command

29



© Copyright 2023 Percona® LLC. All rights reserved

● We created and committed a transaction.
● A tuple was inserted into a heap page.

○ heap_insert added the tuple and generated the WAL record.
■ The page was marked as dirty.
■ Sets pd_lsn to point to the new LSN location; start of the next record.

○ Transaction was marked committed.
■ WAL record was generated for it.

● The data page is NOT written to disk yet.

Let’s Recap

30

XLog 
Record Dataxl_heap_

header
xl_heap_

insert
XLog 

Record Commit



Checkpoint and PITR
Durability and recovery

31



© Copyright 2023 Percona® LLC. All rights reserved

● The primary functions are:
○ Cleaning dirty pages in the buffer pool.
○ Preparing server for recovery.

● When a “checkpoint” starts, it needs to flush all the dirty 
pages to disk.
○ But before it can do that, it saves the current WAL insert 

location.
● After completing the checkpoint, it writes into the WAL a 

checkpoint record with the redo location.

Checkpoint

32



© Copyright 2023 Percona® LLC. All rights reserved

Following REDO
● Resource manager entry for “heap”

● heap_redo function is called.
○ Gets the opcode from the XLogRecord and calls the required 

function. The opcode is XLOG_HEAP_INSERT in this case.
■ heap_xlog_insert in this case.

● Before changes on the page are made, LSN of the record 
is compared with pd_lsn of the page. Change is only IFF:
○ pd_lsn < LSN of the WAL Record

33

PG_RMGR(RM_HEAP_ID, "Heap", heap_redo, heap_desc, heap_identify,
        NULL, NULL, heap_mask, heap_decode)



© Copyright 2023 Percona® LLC. All rights reserved

● Very similar to the recovery process except for:
○ It reads the WAL files from an archive directory.
○ The location of the redo point is read from a backup label file.

PITR

34



3535

TDE

TDE is coming.

Feel free to reach out to me or any of the Percona 
folks here if you want to discuss TDE (transparent 
data encryption). 

GitHub



hamid.akhtar@percona.com
https://www.linkedin.com/in/engineeredvirus/

Thank you!

3636

mailto:hamid.akhtar@percona.com
https://www.linkedin.com/in/engineeredvirus/

