~{-CYBERTEC

POSTGRESQL SERVICES & SUPPORT

PostgreSQL Replication: 20 Pitfalls and Solutions

Julian Markwort

pgconf.eu 2023

Introduction

<{-CYBERTEC

POSTGRESQL SERVICES & SUPPORT
» PostgreSQL Consulting

> PostgreSQL Support
Julian Markwort > PostgreSQL Remote DBA

Senior Database Consultant > and more ...

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 2/70 {]

Motivation

» we consult on, deploy, and administrate a lot of PostgreSQL clusters
» binary replication
> logical replication

> we get confronted with replication problems regularly

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 3/70 {]

PostgreSQL replication problems

PostgreSQL replication is not bad in itself

» usually it's errors by humans or automation

> often it's wrong assumptions and misunderstandings
» sometimes it's misleading or missing documentation
» seldomly it's bugs in PostgreSQL

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 4/70 {]

Precursor

We've identified 20 common pitfalls

» we'll go through the pitfalls one by one
» we'll introduce any concepts required for understanding as needed
» we'll outline solutions for each

This talk is mostly aimed at raising awareness for these pitfalls, not about
discussing them until everyone is bored.

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 5/70 {]

WAL related Pitfalls

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 6/70 ([J

1- WAL Recycling - outline

» PostgreSQL writes WAL to ensure crash recovery is possible
» crash recovery always starts at the latest CHECKPOINT
» so PostgreSQL can recycle all WAL that is older

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 7/70 {]

1- WAL Recycling - problem

» binary replication is just continuous recovery
» (continuous) recovery only works if there are no gaps in WAL
» if the primary recycles WAL, the replicas can’t use it any more to catch up

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 8/70 {]

1- WAL Recycling - solution

> use wal_keep_size setting
> use replication slots
» use archiving

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 9/70 ([J

2 - Archiving - outline

» WAL is split into 16MB segment files
> as soon as PostgreSQL is done writing to a WAL segment
> it switches to a new one
> it calls the archive_command (if archive_mode is enabled) on the old one
> if that returns success, PostgreSQL can recycle the old file when it wants
» archive_command copies all WAL to a central location
> restore_command can be used by replicas to get WAL that the primary has
already recycled

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 10/70 {]

2 - Archiving - problem

» archive_command can falil

» archive_command can be too slow

> so PostgreSQL cannot clean up that file (and any subsequent ones)
» this can quickly lead to out of disk space situations

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 11/70 {]

2 - Archiving - solution

» monitor your archiving (SELECT * FROM pg_stat_archiver;)
» make pg_wal mount large enough
» make sure you can increase your pg_wal mount in a hurry

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 12/70 {]

3 - Replication Slots - outline

> replication slots can be created manually, by your failover tool, basebackup
etc.
> replication slots track the replication process

» the replica advances a restart_lsn
> this LSN (Logical Sequence Number) identifies the point at which the replica
could request WAL after it crashes, or loses the network connection

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 13/70 {]

3 - Replication Slots - problem

» the primary needs to keep all WAL since that restart_1sn
» even if there is no replica connected to advance it

» this can quickly lead to out of disk space situations

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 14/70 {]

3 - Replication Slots - solution

» monitor your replications slots (SELECT * FROM pg_replication_slots;)
> use max_slot_wal_keep_size
» make pg_wal large enough

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 15/70 {]

4 - Replication of Replication Slots - outline

» replication slots are not replicated

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 16/70 ([J

4 - Replication of Replication Slots - problem

» if your primary breaks and you promote a replica, that new primary doesn’t
know anything about the slots on the old primary

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 17/70 ([J

4 - Replication of Replication Slots - solution

> use permanent replication slot feature in patroni
> use pg_failover_slots extension
» will perhaps be added to PG 17

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 18/70 ([J

5 - Parameter Dance - outline

» there are a handful of parameters that are used to allocate fixed memory for
tracking things, such as running transactions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 19/70 {]

5 - Parameter Dance - problem

> these need to be the same (or larger) on the replica, otherwise it can't
reconstruct all transactions
» starting a replica with too low settings will fail

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 20/70 {]

5 - Parameter Dance - solution

» when increasing these values, you should increase them on the replicas first
» when decreasing these values, you should decrease them on the primary first

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 21/70 {]

Switchover related Pitfalls

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 22/70 ([J

6 - Split Brain

» you should only have one primary in your clusters

» if you accept transactions on two primaries, you cannot merge their WAL

» always double check your old primary is down before promoting a replica

» analyze how your HA solutions handles this (it should use something like
locking)

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 23/70 {]

7 - Timeline Switches - outline
» Node A is primary, Node B is replica, both nodes are on Timeline (TL) 1

Node A | TL 1 | 1

2 3 4 5 6 7 *Node A crashesx*
Node B | TL1 | 1 2 3

4 *connection to Node A lost=
» promote Node B

Node B | TL 2 | 5 6 7 8 9
» Node A restarts

Node A | TL 1 | .. 5 6 7

» need to throw away all conflicting data on node A (TL 1, records 5-7)

(]
[
pgconf.eu 2023 24/70 @

PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort

7 - Timeline Switches - problem

» PostgreSQL only has a REDO Transaction log
» can only move forward
» no way (using WAL alone) to undo those changes

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 25/70 {]

7 - Timeline Switches - solution

» grab a new copy of the data directory from the primary
> easy, foolproof, but expensive (10, bandwidth)
> use pg_rewind

» identifies point of divergence

» rebuilds replica from primary by comparing WAL between the two

» rebuilds only affected parts of table data files

> at the end, the replica can start recovery at point of divergence and follow the
timeline switch

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 26/70 {]

8 - Switchover Implications for Autovacuum - outline

» some things are not replicated for performance reasons
» this includes the statistics collector (pg_stat_user_tables etc.)

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 27/70 ([J

8 - Switchover Implications for Autovacuum - problem

> these are things like usage counters, storing them durably and replicating
them is too slow and not necessary for consistency

> pg_stat_user_tables and similar views are what autovacuum relies on to
decide when it needs to run

» the same problem occurs even in standalone databases that do crash
recovery

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 28/70 {]

8 - Switchover Implications for Autovacuum - solution

> run ANALYZE after a switchover

> at least on your tables that don’t get picked up by autovacuum quickly
» that mostly happens to very large tables with a comparatively small amount of
regular inserts/updates/deletes

» monitor your autovacuum and table bloat!

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 29/70 {]

O - Transaction Loss after Failover - outline

> by default, PostgreSQL does not wait for replication feedback from replicas
» you can accidentially promote replicas that have not received all transactions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 30/70 {]

10 - Transaction Loss after Failover - solution

> make sure to only promote replicas that don't lag too much
» you can use synchronous replication

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 31/70 ([J

10 - Synchronous Replication - outline

you turn on synchronous replication

> COMMIT latencies rise
> deal with it

» you cannot COMMIT transactions when the replica is gone
» add a second replica

» you do a failover and there is still a need for a rewind
» did you lose any transactions?

PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023

[]
[]
32/70 @

10 - Synchronous Replication - problem

synchronous commit only waits for replicas to confirm COMMIT WAL records

» all other records are asynchronous

» you can still lose some changes, just like you would with a single instance that
crashes before you coMMITed

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 33/70 {]

Read-Only-Replicas related Pitfalls

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 34/70 ([J

11 - Consistency when querying replicas - problem

> consistency across instances is sometimes weird.
» in asynchronous mode:

» on areplica you can't see some data that was already committed on the primary
» in synchronous mode:

» you can see data on one replica, but the primary is still waiting for feedback from
other replicas

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 35/70 {]

11 - Consistency when querying replicas - solution

» monitor replication lag
» don't consider replicas healthy (for reading) if they have lag
> try to have your application “stick” to the same instance

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 36/70 ([J

12 - Vacuum and Replication Conflicts - outline

> replay can be blocked by open transactions on replicas
> there are no writes, so why can there be conflicts?

» every transaction has a snapshot, that is used to ensure you can see the same
versions of rows even if there are concurrent updates
» there are snapshots on the replicas as well, of course

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 37/70 {]

12 - Vacuum and Replication Conflicts - problem

» the primary regularly runs autovacuum and other maintenance tasks

» autovacuum wants to remove some row versions that can’t be seen by anyone
on the primary

» autovacuum'’s changes are of course written to WAL

» replaying those changes on the replica conflicts with reads on the queries that
might want to see the old versions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 38/70 {]

12 - Vacuum and Replication Conflicts - solution

» there's a tradeoff between

» allowing transactions on the replica to finish
» continuing with WAL replay

» this can be tweaked using max_standby_streaming_delay

» how long can the replay process wait between receiving a change and applying it
» default is 30 seconds

» does not refer directly to the duration of conflicting transactions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 39/70 {]

12 - Vacuum and Replication Conflicts - solution

> don't use replicas that can delay replay indefinitely as candidates for
switchover
» they would need to replay all the transactions when asked to promote.

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 40/70 ([J

12 - Vacuum and Replication Conflicts - solution

» you can also configure the replica to inform the primary about which
snapshots it still needs to see: hot_standby_feedback
» this means that autovacuum progress is slowed down on the primary

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 41/70 {]

13 - Prepared Transactions and Recovery

> prepared transactions are WAL-logged

» survive recovery and thus switchovers
> ensure your transaction manager can manage this

> there was a bug related to recovery in hot_standby with prepared transactions
in PG 13 and 14

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 42/70 {]

14 - Hot Standby doesn't work - outline

a replica in hot standby needs to know which transactions are currently in flight on
the primary to know what data it can show to reading queries

> the primary writes a XLOG_RUNNING_XACTS record into WAL regularly
» replicas can serve queries when they have seen such a record since their
Minimum recovery ending location (pg_controldata)

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 43/70 {]

14 - Hot Standby doesn’t work - problem

» all instances in a cluster crash
> you start them as replicas, wait until they allow connections

> they might have no XLOG_RUNNING_XACTS record in WAL after Minimum recovery
ending location
» they will not open up for reading connections and wait indefinitely

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 44/70 {]

14 - Hot Standby doesn't work - solution

you need to choose a replica (ideally the one with most transactions) and promote
it manually

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 45/70 ([J

15 - Hot Standby doesn’t work - bonus problem

a XLOG_RUNNING_XACTS record only has limited space for subtransactions

» if you have too many subtransactions, this record cannot keep track of all of

them
> XLOG_RUNNING_XACTS record will have it's suboverflowed flag set
> we cannot go into hot standby if we don’t know all (sub-) transactions in flight

(]
[
pgconf.eu 2023 46/70 @

PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort

15 - Hot Standby doesn’t work - bonus solution

» don't use any subtransactions (there are known performance problems)
» don't use too many subtransactions

» don't use SAVEPOINT like it's free
» don't use PL/pgSQL exception blocks like it's free
> don't have long running transactions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 47/70 {]

Logical Replication Related Pitfalls

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 48/70 ([J

16 - Logical Replication Conflicts - problem

> a subscriber is just a regular database that needs to run as a primary
> this means there is no straigh-forward mechanism that prevents you from

writing to your subscriber
» there is no conflict resolution in in-core logical replication

(]
[
pgconf.eu 2023 49/70 @

PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort

16 - Logical Replication Conflicts - solution

> ensure nobody writes to your subscriber, e.g. by using different roles with
only SELECT privileges

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 50/70 ([J

17 - DDL trouble - problem

» logical replication relies on the table schema being the same
» you can work around some differences (depends on the PG version)
» DDL is not replicated at all

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 51/70 {]

17 - DDL trouble - solution

» don't change your schema at all
» if you must change it, do it in a way that will not block replay on the subscriber

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 52/70 {]

18 - long running Transactions and Snapshots - outline

when creating a subscriber, you usually start with an existing table

> so you need to copy the table contents
» logical replication can do this for you
» you don't want to miss any transactions between start and end of the copying

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 53/70 {]

18 - long running Transactions and Snapshots - outline

» the initial table copy worker has to create a snapshot
> it needs to wait for all previous transactions to finish
» and it needs to keep track of all transactions created in the meantime

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 54/70 {]

18 - long running Transactions and Snapshots - problem

» this snapshot can grow too large
» if there are long running transactions, and lots of short transactions

» then the subscriber must start over again
» and will likely fail again if there are still long running transactions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 55/70 ([J

18 - long running Transactions and Snapshots - solution

Don't allow long running transactions

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 L] ([J

19 - max_replication_slots and table sync workers - outline

When adding a subscription for a lot of tables, there will usually be multiple table
sync workers

| 2

>
>
| 2

v

the number is configurable using max_sync_workers_per_subscription
the subscription creates a replication slot

every sync worker creates a replication slot

so you need at least 1+ max_sync_workers_per_subscription slots on the
publisher

you also need at least as many max_logical _replication_workers and
max_worker_processes

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 57/70 {]

19 - max_replication_slots and table sync workers - problem

how many slots do you need on the subscriber?

> there will be no replication slots created on the subscriber
» but max_replication_slots is used to size an array
» this array holds the state for every table sync job

> this is not cleaned up quickly enough in some cases (especiall when there are
lots of small tables)

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 58/70 {]

19 - max_replication_slots and table sync workers - solution

» you need as many max_replication_slots on the subscriber as you have
tables to sync, if you want to be on the safe side

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 59/70 ([J

20 - long running transactions and apply (PG < 14) - problem

before PG 14, the output plugin was only able to send out complete transactions

> the output plugin tracked all changes of that transaction in memory
» if that was too much this was stored on disk

» when the transaction finally commits, all of the changes are sent to the
subscriber

» high potential for replication lag

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 60/70 {]

20 - long running transactions and apply (PG < 14) - solution

since PG 14, the changes can be “streamed” to the subscriber

» now the subscriber is in charge of reassembling the whole transaction
» this can even be done in parallel in PG 16

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 61/70 ([J

Conclusion

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 62/70 ([J

Conclusion

don't use long running transactions!

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 63/70 {]

Thank You

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 64/70 ([J

Archiving after pg_upgrade

» pg_upgrade requires creation of a new (empty) data directory
» this means the LSN counter starts over

» same goes for the timeline
> you need to switch to a new archive after the pg_upgrade

> otherwise there can be conflicts when archiving (file already exists with different
contents)
» or there could be problems when trying to do Point in Time Recovery

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 65/70 {]

Timeline Switches - bonus problem

» pg_rewind doesn’t only make sure that table data files match the primary
> it copies config files and directories it cannot rebuild by comparing the WAL

» this frequently includes the log directory
» so all logs from the old primary before the failover are easily lost

> don't store logs in the data dir

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 66/70 {]

Timeline Switches - bonus bonus problem
» Node A, Band C areon TL 1
> Afails
> you promote Bto TL 2
> B fails
» you promote Cto TL 3
> C fails
> B restarts (as primary), is stillon TL 2
> B lives happily ever after

There is now an abandoned TL 3 in your archive.

> next time you do a PITR and tell recovery to find the newest timeline, it will try
(and most likely fail) to go to TL 3.

» this can also happen in streaming replication setups

» make sure you know how to manually do PITR and change the
recovery_target_timeline to something other than latest

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 67/70 {]

Switchover Implications - bonus problem

» memory allocations are not replicated (shared_buffers)

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 68/70 ([J

Switchover Implications - bonus solution

> run pg_prewarm after a switchover to quickly get your important tables into
shared_buffers
» monitor buffer hit rates for critical tables

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 69/70 {]

Synchronous Replication - expectation management

When you send a COMMIT request to the database, this happens:

a b owON -

6.

the transaction is finished (concurrency contol, triggers, constraint checks)
the COMMIT record is written to WAL

the record is sent to replicas

the replicas process the record, store it in their WAL and flush that

the replicas send feedback to the primary

once the primary has enough feedback, it can send the COMMIT reply

When you received the COMMIT reply, you can assume that the transaction is
durable on primary and replicas.

([J
[J
PostgreSQL Replication: 20 Pitfalls and Solutions Julian Markwort pgconf.eu 2023 70/70 {]

	WAL related Pitfalls
	Switchover related Pitfalls
	Read-Only-Replicas related Pitfalls
	Logical Replication Related Pitfalls
	Conclusion
	Thank You

