Leveraging Al
as a PostgreSQL DBA

. O
O ¢
O O O >
. % OOQD DDDOOQQQQQ
o Y u, 0 g S SRS
Q QQ 0O (OIS

| About me

Grant Fritchey

DevOps Advocate

Microsoft PostgreSQL MVP
AWS Community Builder

X @dgfritchey
L Grant.Fritchey@Red-Gate.com

@ scarydba.com
a Ou O

| Session Goals

* Learn mechanisms to
ensure good Al results

* Understand how to put
Al to work day-to-day

» Discover ways Al helps
administer PostgreSQL

| Absolutely Not Goals

» Discussion of
implementation of Al
extensions

* Development of Al
within your
environment

| You Have To Understand...

* I'mjust a DBA
* But | want to help

| Starting Line

 All About That Prompt
 Trust but Verify

 Wrenches,
Screwdrivers &
Hammers, Oh My

| All About That Prompt

Clarity, clarity, clarity
Use appropriate terms
More detail is better
Context matters

Stop digging, start over

Bad Demo

() write a script to backup my database I X O e g

(), SEARCH COPILOT WORK MY BING IMAGES VIDEOS MAPS NEWS i MORE

About 1,130,000 results

g Done! Here's what | came up with:

L] I L L R o

backup file = os.path.join{BACKUP DIR, f"{DB NAME} {time.strftime(' XyEmid¥HEM®ES)}}.sql")

Command to backup the database
backup command = f"mysgldump -h {DB _HOST} -u {DB_USER} -p{DE_PASSWORD} {DB _MNAME} >
{backup filel"

Execute the backup command
try:
subprocess.run({backup _command, shell=True, check=True)
print{f"Backup successful! Backup file created at: {backup file}")
except subprocess.CalledProcessError as e:
print{f"Backup failed: {e}")

O

| Trust But Verify

Old training data
Bad training data
Hallucinations
Security!

| DeleteMeNow

« Can | get a detailed
explanation of the native
postgresqgl function called
deletemenow?

| meant the deletemenow
built-in function created by
Ryan Booz

Smart Assistant

= LA Earthquake Rattles Southern
¢ = California

4@ Olympic Gold Rush

I3

0

Smart GPT-40 Research

i3 '_]:E The Best Way to Say "Thank
""" You. Hire Me."

&)

Don't Get Cited for Bad Citations

Browse more Assistants and Al

models!

Genius Creative 23 More

| Wrenches, Screwdrivers and Hammers, Oh My

Which tools to use?

Back to our goals, just a
DBA

Ba3|cally, Chat
Microsoft CoPilot

 Google Gemini

 OpenAl ChatGPT

« Perplexity

« You.com

 Brave.com

Fine

' pe 1]
A

3 e
£ ot T
AP T wna
e ast
-

| Putting Al To Work as a DBA

Focused learning
Designing databases

10 work as

Generating data Ol

vla kaleslirope

— \\= 7**0(v
{
¢ =

Creating test scripts
Writing code

Query Optimization
Code Evaluation

| Focused Learning

* How does
PostgreSQL enforce i,
referential integrity? ?\\i&;\hj

1]

3

7 Copilot

Your everyday Al companion

Compose a country song that
describes a peaceful evening on a
quiet, rural landscape

Design a modern kitchen island
that features a bold color and
wood countertop

Compose a pop song about an |
astronaut returning to Earth

Suno Terms | Privacy Suno Terms | Privacy

Copilot uses Al. Check for mistakes. Terms Privacy FAQs [Try Copilot Pro

Choose a conversation style

Maore Maore Maore
Creative Balanced Precise

@ How does PostgreSQL enforce referential integrity?

B o >

| Database Design

Create a set of postgresq|
tables including primary and
foreign keys for amateur
radios and radio operators
where the relationship
between the two is many to
many.

Hello, Grant

Explain the following Create a splashy Explain how something Design a custom cake
code step-by-step in watercolor image works like an engineer for a good friend
detail

< 4 o =

Humans review some saved chats to improve Google Al. To stop this for future chats, turn off Gemini Apps
Activity. If this setting is on, don't enter info you wouldn’t want reviewed or used. How it works

Manage Activity Dismiss

Create a set of postgresg| tables including primary and foreign keys for amateur radios and radio operators
where the relationship between the two is many to many.

& ¢ B

[*<LeamingPostgres> Console [yl *<LeamingPostgres> Console <
“CREATE TABLE radios (
radio id SERIAL PRIMARY KEY,
callsign TEXT UNIQUE,
model TEXT,
manufacturer TEXT,
year made INTEGER,
frequency range TEXT,
power output INTEGER

ADEy -

) 3

“CREATE TABLE operators (
operator id SERIAL PRIMARY KEY,
callsign TEXT UNIQUE,
first name TEXT,
last name TEXT,
license class TEXT,
city TEXT,
state TEXT,
country TEXT

8

"CREATE TABLE radio operators (
radio operator id SERIAL PRIMARY KEY,
radio 1d INTEGER REFERENCES radios(radio id),
operator id INTEGER REFERENCES operators (operator id)

| Generating Data

» Using those tables,
can you generate full
inserts for sample
data based on actual
amateur radios and
operators.

operator_radios (
operator_id

radio_id

assigned_at CURRENT _TIMESTAMP,

KEY {operator id, radio id), y
KEY {operator_id) operators(id} [E CASCADE,
KEY (radio id) radios(id) CASCADE

Explanation:

s ‘“radios’ Table: Stores details about each radio, like model, brand, and frequency band.

* ‘“operators’ Table: Stores details about each radio operator, including their name, license

number, and country.

¢ ‘operator_radios® Table: A junction table with composite primary keys (* operator_id* and

“radio_id") to represent the many-to-many relationship between radios and operators. Foreign

key constraints are added to ensure data integrity.

This design allows an operator to have multiple radios, and each radio can be operated by multiple
operators. The *ON DELETE CASCADE" in foreign key constraints ensures that if a record in the

“operators” or “radios” table is deleted, the corresponding records in the *operator_radios™ table

are also deleted.

How to insert data? Query many-to-many relationship?

Using those tables, can you generate full inserts for sample data based on actual amateur

radios and operators. o

e~~~ 5

*<LeamingPostgres> Console *<LeamingPostgres> Console <

Ir

*INSERT INTO radios (callsign, model, manufacturer, year made, fr
('"W1ABC', 'TS-450S', 'Kenwood', 1998, '1.8-30MHz', 100),
("N2XX', 'IC-7300', 'Icom', 2017, '1.8-54MHz', 100),
('K3LR', 'FT-2000X', 'Yaesu', 2009, '1.8-54MHz', 150),
('"WAKYV', 'FT-817ND', 'Yaesu', 2004, '1.8-30MHz', 5W);

*INSERT INTO operators (callsign, first name, last name, license
("W1ABC', 'John', 'Doe', 'Extra', 'Boston', 'MA', 'USA'),
('N2XX', 'Jane', 'Smith', 'General', 'New York', 'NY', 'USA'),
('"K3LR', 'Michael', 'Johnson', 'Technician', 'Philadelphia', 'PA
("WAKYV', 'Emily', 'Davis', 'Ham', 'Atlanta', 'GA', 'USA');

“INSERT INTO radio_operators (radio_id, operator_ id) VALUES
((SELECT radio id FROM radios WHERE callsign = 'W1ABC'), (SELECT
((SELECT radio id FROM radios WHERE callsign = 'N2XX'), (SELECT
((SELECT radio id FROM radios WHERE callsign = 'K3LR'), (SELECT
((SELECT radio id FROM radios WHERE callsign = 'W4KYV'), (SELECT

| Creating Test Scripts

* Now create a script to
test the database to
determine if all the
other scripts have
functioned correctly on
the postgresql database.

Now create a script to test the database to determine if all the other scripts have
functioned correctly on the postgresgl database.

oot @D

¢ Answer
Certainly! I'll create a PostgreSQL script that tests the database to ensure all the previous

scripts have functioned correctly. This script will check for the existence of tables, verify
the data insertions, and test some relationships. Here's a comprehensive test script:

sqgl

-- Test Script for Amateur Radio Database B

-- Start transaction (so we can rollback any changes made by the test)

BEGIN;

-- Function to log test results

CREATE OR REPLACE FUNCTION log_test(test_name TEXT, result BOOLEAN) RETURNS
VOID AS 3

BEGIN

IF result THEN
RAISE NOTICE '% - PASSED', test_name;

ELSE
RAISE EXCEPTION '% - FAILED', test_name;

END IF;
END;

@ Ask follow-up ® Po ™

-= 1. Check 1T tables exist

*<LeamingPostgres> Console | *<LearningPostgres> Script-2 <
—

®—— Check data integrity
7 SELECT * FROM radios WHERE callsign IS NULL;
g SELECT * FROM operators WHERE callsign IS NULL;

b
b

é_ SELECT * FROM radio_operators WHERE radio id IS NULL OR operator id IS NULL;
°o—— Verify foreign key relationships
SELECT * FROM radio operators WHERE radio id NOT IN (SELECT radio id FROM radios);
_ SELECT * FROM radio_operators WHERE operator_id NOT IN (SELECT operator_id FROM op
- -- Test constraints
it INSERT INTO radios (callsign) VALUES ('W1lABC'); -- Should fail if callsign is UNIC
(2 INSERT INTO operators (callsign) VALUES ('N2XX'); -- Should fail if callsign is UN
o -
) .
2 e—-- Test common queries
CETTIES i
Name Value
Updated Rows 4
Query INSERT INTO radio_operators (radio_id, operator_id) VALUES

((SELECT radio_id FROM radios WHERE callsign = "W1ABC'), (SELECT operator_id FROM operators WHERE callsign = "W1ABC"),
(ISELECT radio_id FROM radios WHERE callsign = 'N2XX'), (SELECT operator_id FROM operators WHERE callsign = "N2XX"),
(ISELECT radio_id FROM radios WHERE callsign = 'K3LR'), (SELECT operator_id FROM operators WHERE callsign = "K3LR"),
((SELECT radic_id FROM radios WHERE callsign = "W4KYV"), (SELECT operator_id FROM operators WHERE callsign = "W4KYV"))
Start time Mon Aug 26 13:33:10 CDT 2024
Finish time Mon Aug 26 13:33:10 COT 2024

CST | en Writable Smart Insert 2:1:25 Sel: 00

| Writing Code

* Create a PostgreSQL function to
retrieve operators that own a
particular radio. Function input
parameter should be radio _id.
Output will be the radio model
and brand as well as the
operator first and last name and
their call sign.

» Constraints: Check if any defined constraints (e.g., UNIQUE , NOT NULL) are
being enforced.
* Queries: Test common queries that might be used to retrieve or analyze data.

Proposed Test Script

SQL

-- Check data integrity

SELECT * FROM radios WHERE callsign IS NULL;

SELECT * FROM operators WHERE callsign IS NULL;

SELECT * FROM radio_operators WHERE radio_id IS NULL OR operator_id IS |

-- Verify foreign key relationships
SELECT * FROM radio_operators WHERE radio_id NOT IN (SELECT radio_id FR(
SELECT * FROM radio_operators WHERE operator_id NOT IN (SELECT operator.

-- Test constraints
INSERT INTO radios (callsign) VALUES ('W1ABC'); -- Should fail if calls:
INSERT INTO operators (callsign) VALUES ('N2XX'); -- Should fail if cal:

-- Test common gueries

SELECT COUNT(*) FROM radios;

SELECT COUNT(*) FROM operators;
SELECT COUNT(*) FROM radio_operators;

SELECT r.collsign, o.first _name, o.last_name

FROM radios r

JOIN radio_operators ro ON r.radio_id = ro.radio_id
JOIN operators o ON ro.operator_id = o.operator_id;

create a postgresg| function to retrieve operators that own a particular radio. Function input parameter
should be radio _id. Output will be the radio model and brand as well as the operator first and last name and
their call sign.

& 9

B
TR

*zLeamningPostgres> Console E *<LearningPostgres> Script-2

RETURNS TABLE (
model TEXT,

~ brand TEXT,
first name TEXT,
last name TEXT,

callsign TEXT

AEEy -

AS $S
BEGIN

' SELECT r.model,
r.manufacturer AS brand,
o.first name,
o.last name,
o.callsign
FROM radios r
JOIN operators o ON ro.operator id = o.operator id
WHERE r.radio id = $1;

END;

$9

LANGUAGE plpgsqgl;
® .
y 1 SELECT * FROM get radio owners(7);
-

| Code Evaluation

» Evaluate this
PostgreSQL function
for compliance with
best practices:

DREEACTNEIT

Evaluate this PostgreSQL function for compliance with best practices: CREATE FUNCTION =
get.radio owners(radio id INT)
RETURNS TABLE (

model TEXT,

brand TEXT,
first_name TEXT,

Eg_l name TEXT,

callsign TEXT

)
AS $8
BEGIN
RETURN QUERY

SELECT rmodel,
rmanufacturer AS brand,

ofirst_name,

olast_name,

o.callsign
FROM radios r

= Focus (3 Attach

| Query Optimization

Using the existing data structures,
can the following query be modified
to enhance performance?

SELECT ar.model, ro2.callsign FROM
public.amateur_radios AS ar JOIN (
SELECT * FROM
public.operator _radio association
AS ora) AS ora2 ON ar.radio_id =
ora2.radio_id JOIN (SELECT * FROM
public.radio_operators AS ro) AS ro2
ON ora2.operator_id IN (SELECT
ro.operator_id FROM
public.radio_operators AS ro)
WHERE 'General' =

LEFT(ro2.license class,7);

Qui

Using the existing data structures, can the following query be modified to enhance #
performance?
SELECT
ar.model,
ro2.callsign
FROM
public.amateur radios AS ar
JOIN (
SELECT
*
FROM
public.operator _radio_association AS gra
) AS ora2 ON
arradio_id = ora2.radio_id
JOIN (
SELECT
*

FROM

public.radio _operators AS ro) AS ro2
ON @

coen @D

| Results

Hash Join (cost=39.10..95.88 rows=2040 width=156) (actual time=0.093..0.100 rows=9 loops=1)

Unique (cost=29.81..29.93 rows=16 width=156) (actual time=0.083..0.086 rows=2 loops=1)

| Manual Edits

SELECT

ar .model,

ro.callsign

FROM

public.amateur radios AS ar

JOIN

public.operator radio association AS ora ON ar.radio id = ora.radio_ id

JOIN
public.radio operators AS ro ON ora.operator id = ro.operator id

WHERE
ro.license class = 'General';

Nested Loop (cost=4.38..29.49 rows=16 width=156) (actual time=0.055..0.059 rows=2 loops=1)

| And After The Indexes

CREATE INDEX idx radio id ON

public.operator _ radio assoc1atlon(radlo id) ;
CREATE INDEX idx operator id ON
public.operator radio association (operator id) ;
CREATE INDEX idx license class ON

public.radio . operators(llcense class) ;

Nested Loop (cost=1.23..10.57 rows=2 width=156) (actual time=0.037..0.043 rows=2 loops=1)

| More Stuff We Could Do

» Please save all the scripts
to a downloadable file.

» Generate a larger set of
sample data

 Create the testsin
markdown language

| Final Thoughts

« Focus on your prompts
first

* Run the Al models
against each other

* Trust but verify
 Stop digging, start over

\\.\

e e
@ ;

S/ TRI

| Session Goals

* Learn mechanisms to
ensure good Al results

* Understand how to put
Al to work day-to-day

» Discover ways Al helps
administer PostgreSQL

| Questions?

| About me

Grant Fritchey

DevOps Advocate

Microsoft PostgreSQL MVP
AWS Community Builder

¥ @gfritchey
L Grant.Fritchey@Red-Gate.com

@ scarydba.com
a Ou O

	Slide 1
	Slide 2
	Slide 3: Session Goals
	Slide 4: Absolutely Not Goals
	Slide 5: You Have To Understand…
	Slide 6: Starting Line
	Slide 7: All About That Prompt
	Slide 8: Bad Demo
	Slide 9: Trust But Verify
	Slide 10: DeleteMeNow
	Slide 11: DeleteMeNow
	Slide 12: Wrenches, Screwdrivers and Hammers, Oh My
	Slide 13: Putting AI To Work as a DBA
	Slide 14: Focused Learning
	Slide 15: Focused Learning
	Slide 16: Database Design
	Slide 17: Database Design
	Slide 18
	Slide 19: Generating Data
	Slide 20: Generating Data
	Slide 21
	Slide 22: Creating Test Scripts
	Slide 23
	Slide 24
	Slide 25: Writing Code
	Slide 26
	Slide 27: Writing Code
	Slide 28: Code Evaluation
	Slide 29
	Slide 30: Query Optimization
	Slide 31: Query Optimization
	Slide 32: Results
	Slide 33: Manual Edits
	Slide 34: And After The Indexes
	Slide 35: More Stuff We Could Do
	Slide 36: Final Thoughts
	Slide 37: Session Goals
	Slide 38: Questions?
	Slide 39

