Streaming I/0

New abstractions for efficient file 1/0

PGConf.EU 2024 | Athens
Thomas Munro & Nazir Bilal Yavuz
Open source database hackers working at Microsoft

Part I: Review of OS facilities

Database
|/O Programming

BINGO
211l
3 303466

‘direot /0 vs
buffered |I/0O

‘vectored /0 (also
called scatter/gather)

‘asynchronous /0 vs
synchronous I/O

HEE
1 5300
10 7504754

MILTON BRADLEY COMPANY

BSD, IRIX, ...
('80s-"90s)

POSIX ('93)

Linux ("037?)

Linux (*19)

read, write, worksync, iowait IBM S/360 (’65)

DEC RX11 (71)
VMS (77)

read, write

UNIX deliberately

simplified: only
synchronous
buffered I/O

p... = with position
...V = vectored
p...v = both

O_DIRECT

aio_read, aio_write, ... NT ("93)

All had/have
various forms of

libaio + kernel support

asynchronous |/O
interface

io_uring

Direct 1/0

fd = open("path"™, O RDWR); fd = open("path", O RDWR | O_DIRECT);
read (fd, ..) write (f£d, ..) read (fd, ..) write (£d, ..)

copies

® ¥

XN —

transfer

Direct I/O is an optimisation (CPU, RAM) and a pessimisation (when synchronous)!

Who wants direct I/0?

Systems that manage their own buffer pool (basically, databases®)

4k
® Qur user space buffer *is* a cache

already, similar to kernel page cache!

® |/O buffering wastes your RAM and
your CPU, throughput is reduced 3K

® But... to skip the page cache
effectively, we also need our own I/O
combining, concurrency, read-ahead,
write-behind, and to tune the buffer

pool size more carefully 2k

0G 1G 2G

PostgreSQL 16
io_direct (string)

Ask the kernel to minimize caching effects for relation data and WAL files using
O0_DIRECT (most Unix-like systems), F_NOCACHE (macOS) or
FILE_FLAG_NO_BUFFERING (Windows).

May be set to an empty string (the default) to disable use of direct I/0, or a comma-
separated list of operations that should use direct I/0. The valid options are data for
main data files, wal for WAL files, and wal_init for WAL files when being initially
allocated.

Some operating systems and file systems do not support direct I/0, so non-default
settings may be rejected at startup or cause errors.

Currently this feature reduces performance, and is intended for developer testing only.

Vectored I/0... who needs it? ‘

Systems that manage their own buffer { | |
pool (basically, databases) void *iov_base;

size_t iov:len;
}i
ssize t pread (int filedes, void *buf, size t nbytes,

off t offset)
ssize t preadv(int filedes,

struct iovec *iov, int iovent, off t offset)

® \WWe want to read large contiguous . . .
chunks of a file into memory in one
operation

® The buffer replacement algorithm

doesn’t try to find contiguous
memory blocks (and shouldn’t!)

e Kernel helps only with buffered I/O

PostgreSQL 17

io_combine_limit (integer))
>,

Controls the largest I/0 size in operations that combine I/0. The default is 128kB.

Asynchronous I/0: who needs it? .

People using direct I/0! (and others...)

® While executing a query, we don’t want our thread to “go to
sleep” waiting for an |I/O operation

® Simple portable implementation is to have I/O worker
threads/processes running preadv/pwritev system call

® Modern (and ancient) OSes offer ways to skip the scheduling
and IPC overheads of using a extra threads/processes

¢ Infrastructure not present in PostgreSQL yet as of v17; patches
exist, testing and review welcome

What architectural changes do we need to
use all of these features effectively?

Part lI: Read Streams

“Reading” blocks of relation data

A very common operation

PostgreSQL works in terms of 8KB blocks, traditionally calling
ReadBuffer (relation identifier, block number)

to access each one

If the buffer is already in the buffer pool, it is pinned

If the buffer is not already in the buffer pool, it must be loaded from disk,
possibly after evicting something else to make space

In order to build larger I/Os and start the physical I/O asynchronously, we
need to find all the places that do that, and somehow convince them to
participate in a new prediction and grouping system

Ad hoc grouping and read-ahead at every call site

Re-usable stream mechanism

combined blocks
read in with io_combine_limit
preadv()
pinned buffers
are pulled out
here

block numbers

are pulled in here

static BlockNumber my blocknum callback(void *private data);

stream = read stream begin relation(..,
my blocknum callback,
&my callback state, ..);

for (1 = 0; 1 < nblocksy +1) for (1 = 0; 1 < nblocks; ++1)

{ {
buf = ; buf = read stream next (stream);
ReleaseBuffer (buf) ; ReleaseBuffer (buf) ;

} }

read stream end(stream);

effective_io_concurrency

preadv() deferred until non-sequential block

absolutely necessary, numbers hin_ted to

so the hint as a good ke_rnel W|_th
chance of working! posix_fadvise()

.....

static BlockNumber my blocknum callback(void *private data);

stream = read stream begin relation(.,
my blocknum callback,

&my callback state, ..);

for (1 = 0; 1 < nblocks; ++1)

{
buf = read stream next (stream);
ReleaseBuffer (buf) ;

}

read stream end(stream);

By issuing POSIX_FADV_WILLNEED as soon as possible and preadv() as late as
possible, we get a sort of poor man’s asynchronous 1/0.

Prediction is difficult, especially

about the future

- Danish proverb about look-ahead callback functions

o 6 o o

Arithmetic-driven:
seq scan (v17)
ANALYZE sampling (v17)

;I:I

->I

>

Data-driven:
bitmap heapscan (WIP)
recovery (WIP)

Knuth’s sampling
Callback of ANALYZE algorithm is used to
select block numbers
to analyze. Block
numbers are
increasing not always
consecutive.

static BlockNumber
block sampling read stream next (ReadStream *stream,

vold *callback private data,

volid *per buffer data)

BlockSamplerData *bs = callback private data;

return BlockSampler HasMore (bs) ? BlockSampler Next (bs) : InvalidBlockNumber ;

Callback of bitmap heap

atic BlockNumber

heap_bitmap_scan_stream read next(

m *stream,
*callback_private_data,
»id *per_buffer_data)

sScan

-sult *tbmres = per buffer data;
c *bscan = callback_private data;
He *hscan = &bscan->rs_heap_base;
for (;7)
{
"HECK FOR INTERRUPTS ();
tbm_iterate (shscan->rs_base.tbmiterator, tbmres); -
* no more entries in the bitmap *
if (!BlockNumberIsvalid (tbmres->blockno))

return Inva

() && tbmres->blockno >= hscan->rs_nblocks)
1tinue

if (!(hscan->rs_base.rs_flags & SO NEED TUPLES) &&
Itbmres->recheck &&

L_VISIBLE (hscan->rs_base.rs_rd, tbmres->blockno, &bscan->rs_vmbuffer))

rt (tbmres->ntuples >= 0);
sert (bscan->rs_empty_tuples_pending >= 0);

bscan->rs_empty_tuples_pending += tbmres->ntuples;
continue ;

return tbmres->blockno;

* https://www.postgresql.org/message-id/CAAKRu_ZwCwWFelL

lterating through bitmap

H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXg0vaA%40mail.gmail.com

https://www.postgresql.org/message-id/CAAKRu_ZwCwWFeL_H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXq0vaA%40mail.gmail.com

Deciding how far ahead to look

® A stream doesn’t generally know if e.g. SELECT .. LIMIT 1 needs more

than one block, so it starts out reading just a single block and increases the
look ahead distance only while that seems to be useful.

® |n this way we don’t pay extra overheads such as extra pins and bookkeeping
unless there is some benefit to it.

Tuning the look-ahead distance

Sequential I/0
pattern detected:
currently no point

All cached in look ahead
further than

Random I/0 pattern
detected: currently
fadvise used to
control concurrency

io_combine_limit

1 io_combine_limit K * effective_io_concurrency

Distance moves up
. . and down in
(V17 algorithm, subject to future response

to randomness, hits

Improvements for real AlQO!) and misses

Sequential Scan - strace output

recvfrom (10,
pread64 ()

preadv (
preadv
preadv
preadv
preadv
preadv
preadv

)
()
()
()
()
()
()

preadv
preadv
preadv
preadv
preadv ()

()
()
()
()

recvirom (

= 8192

16384
32768

= 65536

131072
131072

= 131072

10

131072

131072
131072
131072

= 131072

122880

"O\O\O\OOO2SELECT * from pgbench accou"..

Distance increases
quickly up to
lo_combine_limit

, 0x564b68d59p60, 8192, 0, NULL, NULL) =
unavailable)

., 8192,

-1 EAGAIN

0, NULL, NULL)

(Resource temporarily

Random Scans - strace output

recvirom (10, "Q\O\O\O\36ANALYZE pgbench accounts;\0", 8192, 0, NULL, NULL) = 31

preado64 (18, "..."..., 8192, 524288) = 8192

fadviseod4 (18, 548804, 8192, POSIXiFADV7WILLNEED) =0

pread64 (18, "..."..., 8192, 548864) = 8192 |Ssuing POSIX _FADV_WILLNEED
fadviseod (18, 737280, 8192, POSIXiFADV7WILLNEED) =0

» early, anticipating later pread

fadvise64 (18, 950272, 8192, POSIX FADV WILLNEED)

fadvise64 (18, 1564672, 8192, POSIX FADV WILLNEED) = 0

pread64 (18, "..."..., 8192, 737280) = 8192

fadvise64 (18, 1638400, 8192, POSIX FADV WILLNEED) = 0

fadvise64 (18, 1974272, 16384, POSIX FADV WILLNEED) = 0

fadvise64 (18, 2097152, 8192, POSIX FADV WILLNEED) = 0

fadvise64 (18, 2383872, 8192, POSIX FADV WILLNEED) = 0

pread64 (18, "..."..., 8192, 950272) = 8192

fadvise64 (18, 2400256, 8192, POSIX FADV WILLNEED) = 0

fadvise64 (18, 2531328, 8192, POSIX FADV WILLNEED) = 0

fadvise64 (18, 2654208, 8192, POSIX FADV WILLNEED) = 0

pread64 (18, "..."..., 8192, 1564672) = 8192 :

fadvise64 (18, 3276800, 8192, POSIX FADV WILLNEED) = 0 I/O Comblned When
pread64 (18, "..."..., 16384, 1974272) = 16384 < neighbouring blocks are
fadvise64 (18, 3792896, 8192, POSIX_FADV_WILLNEED) = 0

pread64 (18, "..."..., 8192, 2097152) = 8192 sampled

Some “streamification” projects

Read Stream user Status
Sequential Scan (heap AM) als
ANALYZE (heap AM) v17
pg_prewarm v17

CREATE DATABASE (strategy = wal_log)

Committed, v18

pg_visibility Committed, v18
VACUUM (heap AM) WIP
autoprewarm WIP
Bitmap Heap Scan WIP
Recovery WIP

Many more opportunities to “streamify” things

e Index scans in core
o Many types of index need patches to use streams

e Extension AMs

o Every table AM and index AM is a potential candidate for streamification
o Inv17, extensions that start using streams will benefit from 1/0O combining and read-ahead
advice for random access

e All code that is using the stream abstraction will automatically benefit from
future improvements to support true AlO in later releases

e Streams should be the preferred way to access predictable sequences of
relation data

Part lll: More experimental work
on |/O streaming

Research on other kinds of Read Stream

e POC: Multi-relation read stream
O Developed for recovery/replication; other users are possible
e POC: Automatic read stream

O Drop-in replacement for traditional ReadBuffer() that speculatively reads ahead with simple consecutive

block heuristics, for cases that can’t be easily predicted but today benefit from kernel read-ahead

e POC: Out-of-order streams: return already-cached data first
e POC: Raw files, by-passing the buffer pool
e Ideas: Non-1/O speed-ups may be possible with streams

O Even for data that is fully cached already and thus don’t need I/O, it can still be useful to look ahead:
memory can be prefetched into high cache levels
O Future work on buffer mapping may use a tree structure, and be able to find consecutive block numbers in

memory faster with fewer locks

Experiment: streamifying pgvector HNSW search

Gaph traversals with trivially predictable
block access, and also some speculative
prediction opportunities

Streamifying just the easy part already
gives measurable speedup and reduced
variation with cold indexes (see
pgsql-hackers list for patch)

Cold HNSW may not be interesting in
practice... but DiskANN-like indexes
(e.g. pgvectorscale) might be a good
target?

master
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream
stream

linux (xfs)
| speedup | stdev

WWPHLrWPRALRWWWWWWWNNNRRR

OO UOVWOONWORNRFROORWEOS®

WER RO RRFRPRRFRWENENWNRUIO D

.699
. 845
. 088
.607
. 691
.435
. 908
.153
.594
. 094
.695
.647
. 503
.874
.692
.429
. 469

Writing: WIP

. Initial focus was on an AP for reading

- Reads happen all over the tree

- Important to make a suitable read abstraction available for wider use ASAP

. Writing happens in fewer more centralised places: WriteStream POCs exist

o Checkpointer

o Background writer

o Evicting individual buffers

- Evicting buffers used in a BufferAccessStrategy (“ring” of reusable buffers)

- Raw relation writing that bypasses buffer pool

Part IV: Introduction to true AlO

Andres Freund’s proposed AlO subsystem
https://github.com/anarazel/postgres/tree/aio-2 (note 2!)

. Advice-based prefetching is replaced with background reading
o posix_fadvise(..., POSIX_FADV_WILLNEED), intermediate work, preadv(...) becomes:
o [start read], intermediate work, [wait for completion]

. Mechanism used is selected with 1o method setting

o synchronous — portable
o worker — portable
o 1o uring —Linux
. Other implementations are possible
o iocp — Windows overlapped
o posix aio — FreeBSD
o <extension>? — useful for distributed/network storage projects?

https://github.com/anarazel/postgres/tree/aio-2

Anything using the stream abstraction automatically starts using
asynchronous 1/O

Running I/O operations are represented as an object in shared memory

The work done so far on I/O combining and streaming was an architectural
change to prepare for DIO and AlO

Parellelising the streamification work
Avoiding potential regressions

Part V: Trying out AlO patches

Try it yourself

git remote add andres https://github.com/anarazel/postgres.git
git fetch andres aio-2

git checkout aio-2 *

R More recent

ninja install
path/to/bin/initdb -D pgdata
path/to/bin/postgres -D pgdata

vr Ur Ur r Ur r

/path/to/bin/postgres -D pgdata

— postgres: io worker worker: 1

— postgres: io worker worker: 0

— postgres: io worker worker: 2

— postgres: checkpointer

— postgres: background writer

— postgres: walwriter

— postgres: autovacuum launcher

— postgres: logical replication launcher
'— postgres: user postgres [local] idle

https://www.postgresqgl.org/message-id/uvrtrknj4kdytuboidbhwclo4gxhswwcpgadptsjvigcluzmah%40brgs62irg4dt

https://www.postgresql.org/message-id/uvrtrknj4kdytuboidbhwclo4gxhswwcpgadptsjvjqcluzmah%40brqs62irg4dt

iI0_method = sync

e Works just like v17, no AlO, useful mainly for
comparison/understanding
e Synchronous system calls
o Relying on system read-ahead for sequential access
o Issuing read-ahead advice for random access
e Performs badly with direct I/O enabled, because read-ahead
(heuristic or advice-based) is not possible

o method = io_worker

/O is offloaded to worker processes
Number of I/0O workers is controlled by io workers setting
Should probably be more dynamic (future work)

Process tree when io_workers = 3

68410
68411
68412
68413
68414
68416
68417

LR N S N)

Ss
Ss
Ss
Ss
Ss
Ss
Ss

O O O O O o o

:00
:00
:00
:00
:00
:00
:00

postgres:
postgres:
postgres:
postgres:
postgres:
postgres:
postgres:

io worker worker: O

io worker worker: 1

io worker worker: 2
checkpointer

background writer

walwriter

logical replication launcher

io_worker:

Query execution process (regular backend):

kill (69236, SIGURG) = 0
epoll wait() =1
kill (69236, SIGURG) = 0
epoll wait() =1
kill (69236, SIGURG) = 0
epoll wait() =1
kill (69236, SIGURG) = 0
epoll wait() =1

Backend process signals worker process to start a read
operations before it needs the data

In the best case the read is finished before it needs the
data, but if not it waits for the I/O worker to finish

|/O worker process:

pread64 () = 8192

kill (69247, SIGURG) = 0
pread64 () = 16384

kill (69247, SIGURG) = 0
epoll wait() =1
pread64 () = 32768

kill (69247, SIGURG) = 0
epoll wait() =1
pread64 () = 65536

kill (69247, SIGURG) = 0
epoll wait() =1
pread64 () = 131072

kill (69247, SIGURG) = 0
epoll wait() =1
pread64 () = 131072

Worker process does the read

Then signals backend process, saying the read
is finished, but only if it is waiting

If the queue of I/O requests is empty, it waits for
more instructions

iI0_method = i0_uring

submission queue entries completion queue entries
C LS C LS

£ 2 £ 2

Yo' o'

°* io uring enter (): initiate and/or wait for many operations

® Start multiple operations at once by writing them into a submission queue in user
space memory and then telling the kernel

® Consume completion notifications, either directly from user space memory if
possible, or by waiting if not

iIo_method = 10_uring

recvfrom (138, "Q\0\O\0OO2SELECT * from pgbench accou"..., 8192, 0, NULL, NULL) = 51
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, 0, NULL, 8) =1
io uring enter(4, 1, 0, O, NULL, 8) =

io uring enter(4, 1, 0, 0, NULL, 8) =1
recvfrom (138, 0x55ba69263d20, 8192, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)

Simple benchmark results

Configuration:

® Jutovacuum = Off
e cffective 1o concurrency = 128
¢ 1o combine limit = 32

Create table:

e S pgbench -i -s 5000 $DB — 73 GB table
Query:

® OSELECT sum(abalance) FROM pgbench accounts;

iIo_method - Timings

mmm AIO_DIRECT_IO_ENABLED
mEm AIO_DIRECT_IO_DISABLED
W REL 17 STABLE

0
S
£
0
(=]
=
£
'—

worker io_uring
io_method

io_direct - CPU cycles

Bl io_direct_enabled
Bl o_direct_disabled

CPU cycles in billions

AIO_io_worker AIO_io_uring REL_17_STABLE

Conclusion

Streams enable optimisations, current and future

Consider streamifying your extension or parts of PostgreSQL you are
interested in, we're happy to help if we can!

If you can’t for technical reasons, we're very interested to know why and
how we can improve the infrastructure

Try out the AlO v2 patch set

The end
TO TEAOC

