
Yugo Nagata

PGConf.EU 2024

pg_ivm:
 Extensions for Rapid Materialized View Update

2© 2024 SRA OSS K.K.

● An extension module that provides Incremental View
Maintenance (IVM) feature for PostgreSQL.

– IVM = a way to make materialized views up-to-date rapidly.

pg_ivm

3© 2024 SRA OSS K.K.

● Software Engineer & Researcher at SRA OSS K.K.
– R&D related to PostgreSQL
– Technical support & Consulting

● PostgreSQL Contiributor
● Author of pg_ivm

Yugo Nagata

4© 2024 SRA OSS K.K.

● What is Incremental View Maintenance
● What is pg_ivm

– How to use it
– How it works

● Performance
● Development and Future Plans

Outline

5© 2024 SRA OSS K.K.

Incremental View Maintenance

6© 2024 SRA OSS K.K.

Incremental Maintenance of Materialized Views (1)

Table R

Table S View Definition Query“SELECT … FROM R, S ...”
Materialized View

clientquery

rapid response

Results of the view definition
query is stored in the database

7© 2024 SRA OSS K.K.

Incremental Maintenance of Materialized Views (2)

Table R

Table S

modified

stale
contents

Needs maintenance after a
table is modified.inconsistent

Materialized View

View Definition Query“SELECT … FROM R, S ...”

Results of the view definition
query is stored in the database

8© 2024 SRA OSS K.K.

Incremental Maintenance of Materialized Views (3)

Table R

Table S

modified

Updated!

The latest state
of table R

Re-compute the materialized
view contents using the
latest table state

=

REFRESH MATERIALIZED VIEW

Materialized View

View Definition Query“SELECT … FROM R, S ...”

9© 2024 SRA OSS K.K.

Incremental Maintenance of Materialized Views (4)

Table R

Table S

modified

changes in
Table R

Re-compute the materialized
view contents using the
latest table state

Compute only the
incremental changes in the
view and apply it

changes in
the view

apply

Incremental View Maintenance

=

REFRESH MATERIALIZED VIEW

=

View Definition Query“SELECT … FROM R, S ...”
Materialized View

Updated!

10© 2024 SRA OSS K.K.

A Simple Example of Incremental View Maintenance (1)

number english

1 one

2 two

3 three

number roman

1 I

2 II

3 III

R S

number english roman

1 one I

2 two II

3 three III

V ≝ R ⋈ S natural
join

11© 2024 SRA OSS K.K.

A Simple Example of Incremental View Maintenance (2)

number english

1 one → ONE

2 two

3 three

number roman

1 I

2 II

3 III

R ← (R − ∇R ∪ ∆R) S

number english roman

1 one I

∇V = ∇R ⋈ Snatural
join

number english

1 one

number english

1 ONE

∇R
∆R

number english roman

1 ONE I

∆V = ∆R ⋈ S
natural
join

Table R is modified

Calculate the changes in the view

12© 2024 SRA OSS K.K.

A Simple Example of Incremental View Maintenance (3)

number english roman

1 one I

∇V
number english roman

1 ONE I

∆V
number english roman

1 one → ONE I

2 two II

3 three III

V ← (V − ∇V ∪ ∆V)delete
insert

Update the view by applying the changes

13© 2024 SRA OSS K.K.

What is pg_ivm

14© 2024 SRA OSS K.K.

● Incremental View Maintenance (IVM) is not supported in PostgreSQL

→ A set of patches have been proposed.

● Some request to use IVM with the current PostgreSQL

→ pg_ivm developed for providing the feature as not only patches
but also an extension module.

– Other purposes:
● Improve opportunities to get feedback for IVM features
● (in future) Provide advanced features

PostgreSQL and Incremental View Maintenance

15© 2024 SRA OSS K.K.

● You can create
Incrementally Maintainable Materialized View (IMMV)

● IMMV is automatically updated when a underlying table is modified
（= immediate maintenance）
– AFTER triggers are created on tables, and the view is updated from within them.

– You don’t have to write the trigger functions by yourself.

– A view that would take 20 seconds with the normal REFRESH could be updated in 15 milliseconds

● Compatible with PostgreSQL 13, 14, 15, 16, and 17.

Overview of pg_ivm

16© 2024 SRA OSS K.K.

● The current proposed features for PostgreSQL
– IMMV is implemented by extending the materialized view feature

● Use “CREATE INCREMENTAL MATERIALIZED VIEW” to create it.

– (inner) joins、built-in aggregates （count, sum, avg, min, max）, and DISTINCT

● pg_ivm
– IMMV is implemented as a table

● Use create_immv() function to create it.

– Support more complex views
● A simple subquery in the FROM clause
● CTE (WITH clause)
● EXISTS clause

Proposed feature for PostgreSQL vs. pg_ivm

17© 2024 SRA OSS K.K.

● Supported
– Inner joins (including self joins)

– DISTINCT clause

– Some built-in aggregate functions (count, sum, avg, min, and max)

– Simple sub-queries in FROM clause, simple CTEs (WITH query)

– EXISTS sub-queries

● Not Supported
– Other aggregates, windows functions

– Outer joins

– Subqueries containing aggregaet or DISTINCT

– HAVING, ORDER BY, LIMIT/OFFSET, UNION/INTERSECT/EXCEPT, DISTINCT ON, TABLESAMPLE,
VALUES, FOR UPDATE/SHARE

– IMMVs including other view, materialized view, paritioned table, or foreign table

Supported View Definitions and Restriction of pg_ivm

18© 2024 SRA OSS K.K.

How to use pg_ivm

19© 2024 SRA OSS K.K.

● From source
– Get the souce code from GitHub（https://github.com/sraoss/pg_ivm）
– PostgreSQL source code, or devel package （postgresql17-devel, postgresql-server-

dev-17, etc.） is required.

● RPM package
– Provided in PostgreSQL Yum Repository（https://yum.postgresql.org/）

Installation (1)

$ make install

$ sudo yum install pg_ivm_17

https://github.com/sraoss/pg_ivm
https://yum.postgresql.org/

20© 2024 SRA OSS K.K.

● CREATE EXTENSION

– the following objects are created.

● Table
– pg_ivm_immv: The catalog table that stores IMMV information

● Functions
– create_immv : Create an IMMV
– refresh_immv: Refresh an IMMV manually
– get_immv_def: Get the view definition query of an IMMV

Installation (2)

CREATE EXTENSION pg_ivm;
shared_preload_libraries = 'pg_ivm'

postgresql.conf

21© 2024 SRA OSS K.K.

● Call create_immv function with a relation name and a view
definition query
– Correspond to executing CREATE MATERIALIZED VIEW command

– Create a unique index on the IMMV automatically if possible

Create IMMV

test=# SELECT create_immv('mv(aid, bid, abalance, bbalance)',
 'SELECT a.aid, b.bid, a.abalance, b.bbalance
 FROM pgbench_accounts a JOIN pgbench_branches b USING(bid)');

NOTICE: created index "mv_index" on immv "mv"
 create_mv

 10000000
(1 row)

22© 2024 SRA OSS K.K.

● An entry has been added to the pg_ivm_immv catalog .

Information on IMMV

test=# SELECT * FROM pg_ivm_immv WHERE immvrelid = to_regclass('mv');
 immvrelid | viewdef | ispopulated
-----------+--+-------------
 mv | {QUERY :commandType 1 :querySource 0 :canS.| t
 |.etTag true :utilityStmt <> :resultRelation.|
 |. 0 :hasAggs false :hasWindowFuncs false :h.|
 |.asTargetSRFs false :hasSubLinks false :has.|
 （snip）
 |.nList <> :mergeUseOuterJoin false :stmt_lo.|
 |.cation 0 :stmt_len 0} |
(1 row)

23© 2024 SRA OSS K.K.

● The view definition can be checked using the get_immv_def
function.
– Correspond to psql’s \d meta-command.

IMMV View Definition

test=# SELECT get_immv_def('mv');
 get_immv_def

 SELECT a.aid, +
 b.bid, +
 a.abalance, +
 b.bbalance +
 FROM (pgbench_accounts a +
 JOIN pgbench_branches b USING (bid))
(1 row)

24© 2024 SRA OSS K.K.

● When a base table is updated, the IMMV is automatically
updated.
– Takes 15.448 ms

– REFRESH of a materialized view with the same definition takes more than 20
seconds.

Automatic Update of IMMV

test=# UPDATE pgbench_accounts SET abalance = 1234 WHERE aid = 1;
UPDATE 1
Time: 15.448 ms

test=# SELECT * FROM mv WHERE aid = 1;
 aid | bid | abalance | bbalance
-----+-----+----------+----------
 1 | 1 | 1234 | 0
(1 row)

25© 2024 SRA OSS K.K.

● Call refresh_immv function with a relation name

– Correspond to executing REFRESH MATERIALIZED VIEW command

– The second argument specifies if new data is generated
（corresponding to WITH [NO] DATA option）

● true: the view definition query is executed to provide the new data,
and automatic update is enabled.

● false: the IMMV is truncated, and automatic update is disabled.

Manual Refresh of IMMV

test=# SELECT refresh_immv('mv', true);
 refresh_immv

 10000000
(1 row)

26© 2024 SRA OSS K.K.

● psql’s \d meta-command shows it as “Table”.

An IMMV is actually a table

test=# \d mv
 Table "public.mv"
 Column | Type | Collation | Nullable | Default
----------+---------+-----------+----------
+---------
 aid | integer | | |
 bid | integer | | |
 abalance | integer | | |
 bbalance | integer | | |
Indexes:
 "mv_index" UNIQUE, btree (aid, bid)

27© 2024 SRA OSS K.K.

● Same as normal materialized views of PostgreSQL
– This causes an error.

IMMV cannot be directly upated

test=# DELETE FROM mv WHERE aid = 1;
ERROR: cannot change materialized view "mv"

28© 2024 SRA OSS K.K.

● Use DROP TABLE command
– Information in the pg_ivm_immv catalog is automatically deleted.

Drop IMMV

test=# DROP TABLE mv;
DROP TABLE

test=# SELECT * FROM pg_ivm_immv WHERE immvrelid = to_regclass('mv');
 immvrelid | viewdef | ispopulated
-----------+---------+-------------
(0 rows)

29© 2024 SRA OSS K.K.

How pg_ivm works

30© 2024 SRA OSS K.K.

Overview of View Maintenance

Base talbesTables

Materialized View
（IMMV)

Delta
tables

Delta
tables

Delta
tables

Changes
in Tables

ビュー差分
（一次差分）View Definition

Query
Apply

Changes
in the view

Modification

Extract

Compute

R, S ∇R, ΔR, ∇S, ΔS

∇V, ΔV

∇R, ΔR, ∇S, ΔS

V

31© 2024 SRA OSS K.K.

Overview of View Maintenance

Base talbesTables

Materialized View
（IMMV)

Delta
tables

Delta
tables

Delta
tables

Changes
in Tables

ビュー差分
（一次差分）View Definition

Query
Apply

Changes
in the view

Modification

Extract
R, S ∇R, ΔR, ∇S, ΔS

∇V, ΔV

∇R, ΔR, ∇S, ΔS

V

AFTER triggers
 & Transition Tables

Rewrite the view definition
query and execute it

Execute SQL internally

Compute

32© 2024 SRA OSS K.K.

● When an IMMV is created, AFTER trigger are created on all
base tables.
– Fired after execution of INSERT, DELETE, UPDATE, and TRUNCATE

– Changes in the table is extracted, and changes in the view is computed within it.

● Changes in table is extracted as Transition Tables
– Two tables that can be referred to within AFTER triggers, and each contains:

● Rows deleted from the table

● Rows inserted into the table

Extracting Changes in Table

33© 2024 SRA OSS K.K.

● Rewrite the view definition query and execute it.
– Modified table is replaced with the transition table

Compute Changes in View

SELECT ... FROM R, S WHERE ...

SELECT ... FROM new_table_R, S WHERE ...

modified table

Transition Table (rows inserted into R)

View Definition Query：

After Rewritten:

→ The results are ”rows to be inserted into the view”.

34© 2024 SRA OSS K.K.

● Execute SQL internally
– Use DELETE to delete rows from the IMMV.

– Use INSERT to insert rows into the IMMV.

– Use UPDATE to update aggregate values in the IMMV.

● Index on an IMMV
– An appropriate index is necessary on the IMMV to scan target rows of DELETE and

UPDATE efficiently.

– The index is automatically created if possible.

● If the view contains primary key columns of tables or GROUP BY clause.

Apply Changes to View

35© 2024 SRA OSS K.K.

● Update aggregate values in the view by using aggregate results
on table changes.
– Examples:

● count(x) ← count(x) ± [count(x) on table changes]
● sum(x) ← sum(x) ± [sum(x) on table changes]
● avg(x) ← (sum(x) ± [sum(x) on table changes])

 / (count(x) ± [count(x) on table changes])

● Some columns are automatically added to store:
– The number of rows (__ivm_count__) in the whole view and each group.
– For avg aggregate, the results of sum and count aggregates.

Maintenance of View with Aggregates

Changes
in Table

View Definition
Query

Aggregate
on Change

Aggregates
in the View

apply

36© 2024 SRA OSS K.K.

● Tuples are inserted into a table
– min(x) ← least (min(x), [min(x) on inserted rows])
– max(x) ← greatest (max(x), [max(x) on inserted rows])

● Tuples are deleted from a table：
– When existing min(x) or max(x) value need to be deleted from the view:

 → Re-compute the new value from the latest table.
– Otherwise: nothing to do

Aggregate: min(x) & max(x)

10

min values
in the view

5, 15, 20

values inserted
into the table

5

the min value
in table
changes

least

5 the new min
value

37© 2024 SRA OSS K.K.

● A column （_ivm_count_） that stores the number of rows for
each distinct row is automatically added.
– The count value is updated when a table is modified.
– When the count becomes zero, the row is removed from the view.

Maintenance of View with DISTINCT

38© 2024 SRA OSS K.K.

● When a base table is TRUNCATEed,
the IMMV is also TRUNCATEed.
– If any base table is empty, the contens of the view also must be empty.

– Exception: if the view contains an aggregates without GROUP BY;
● The view always has only one row.

● After a base table is truncated, the view has a row whose column values are NULL.

TRUNCATE

39© 2024 SRA OSS K.K.

● Possible situations
– Updating CTEs

– Triggers

– Foreign key constraint

● Self-join shares the same situation
– Tables appearing in a query repeatedly ≒ Different tables with the same contents

● In this case, both pre-update and post-update states of tables are needed to compute
incremental changes in the view.

– Example: JOIN view
● View definitnion　　　 V R S≝ ⋈
● Tables modifications　　　R ← R ∪ R, S ← S ∪ S∆ ∆
● Incremental change　 ∆V = (R S_old) ∪ (R_new S)∆ ∆⋈ ⋈

Simultaneous Multiple Tables Modification

WITH x AS (INSERT INTO r VALUES(1,10) RETURNING 1),
　　 y AS (INSERT INTO s VALUES(1,100) RETURNING 1)
SELECT 1;

40© 2024 SRA OSS K.K.

● Only “post-update” state is available in AFTER trigger functions
● “pre-update” state can be obtained by using a saved

“snapshot”
– Save the current snapshot before the table modification (in BEFORE trigger)

– When scanning the table, call ivm_visible_in_prestate function in WHERE
clause

– This function returns true if a row is visible with the given snapshot.

→ The results with deleted rows append is “pre-update” state

How to get “pre-update” state of table?

SELECT… FROM tbl

WHERE ivm_visible_in_prestate(t.tableoid, t.ctid, matview_oid);

41© 2024 SRA OSS K.K.

Performance

42© 2024 SRA OSS K.K.

● Q01: Aggregate on a large table
– When we use a normal materialized view:

● Update one row in lineitem： 2 min sec.
● REFRESH: 11 sec.

Performance Evaluation Using TPC-H Query (1)
CREATE MATERIALIZED VIEW mv01 AS
select

l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as

sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from
lineitem

where
l_shipdate <= date '1998-12-01' - interval '78' day

group by
l_returnflag,
l_linestatus;

tpch=# UPDATE lineitem
 SET l_quantity = l_quantity * 2
 WHERE (l_orderkey, l_linenumber)
 = (3653,1);
UPDATE 1
Time: 2.077 ms

tpch=# REFRESH MATERIALIZED VIEW mv01;
REFRESH MATERIALIZED VIEW
Time: 11277.638 ms (00:11.278)

 ※ scale factor = 1
（lineitem: 6M rows）

Panasonic Let’s note CF-SV7
CPU: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz (8 core)
DRAM: 16GB
Storage: SSD
OS: Ubuntu 22.04.4 LTS (64bit), linux kernel 5.15.0-124-generic
PostgreSQL 17 + pg_ivm 1.9

43© 2024 SRA OSS K.K.

Performance Evaluation Using TPC-H Query (2)
SELECT create_immv('immv01',
'select

l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as

sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from
lineitem

where
l_shipdate <= date ''1998-12-01'' - interval ''78'' day

group by
l_returnflag,
l_linestatus');

tpch=# UPDATE lineitem
 SET l_quantity = l_quantity * 2
 WHERE (l_orderkey, l_linenumber)
 = (3653,1);
UPDATE 1
Time: 19.635 ms

● Q01: Aggregate on a large table
– When we use a normal materialized view:

● Update one row in lineitem： 2 min sec.
● REFRESH: 11 sec.

– pg_ivm：
● Update one row in lineitem

 & automatic update of IMMV： 20 min sec.

View update: 500x+ faster

 ※ scale factor = 1
（lineitem: 6M rows）

44© 2024 SRA OSS K.K.

Performance Evaluation Using TPC-H Query (3)
SELECT create_immv('immv09',
'select

nation,
o_year,
sum(amount) as sum_profit

from
(

select
n_name as nation,
extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) -

 ps_supplycost * l_quantity as amount
from

part, supplier, lineitem, partsupp, orders, nation
where

s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like ''%sandy%''

) as profit
group by

nation,
o_year');

tpch=# UPDATE lineitem
 SET l_quantity = l_quantity * 2
 WHERE (l_orderkey, l_linenumber)
 = (3653,1);
UPDATE 1
Time: 32.474 ms

● Q09: Aggregate on six tables join
– When we use a normal materialized view:

● Update one row in lineitem： 2 min sec.
● REFRESH: 5 sec.

– pg_ivm：
● Update one row in lineitem

 & automatic update of IMMV： 32 min sec.

 ※ scale factor = 1
（lineitem: 6M rows）

View update: 150x+ faster

45© 2024 SRA OSS K.K.

● IMMV can be updated more rapidly than REFRESH, but it affects
table update performance.
– Suitable use case:

● The response time of table updates is not so critical, and the latest view state is required immediately
after the table update.

– When large data is loaded to a table, disable automatic update of IMMV.

● Performance with Concurrent Transactions
– When concurrent transactions update an IMMV, an exclusive lock is acquired to avoid

inconsistent results.
● READ COMMITTED isolation level: one transaction is waited.

● REPEATABLE READ isolation level: one transaction is aborted.

Performance Trade-Off

SELECT refresh_immv('mv', false);

46© 2024 SRA OSS K.K.

Development of pg_ivm

47© 2024 SRA OSS K.K.

● GitHub：https://github.com/sraoss/pg_ivm

● Developer： IVM Development Group

● License： PostgreSQL License

Development of pg_ivm

v1.0:
 JOIN,

DISTINCT,
PG14

v1.1:
 TRUNCATE,
refresh_immv,

PG13

v1.3:
get_immv_def

bug fixes

v1.4:
bug fixes

961 stars
(Oct 25, 2024)

v1.5:
CTE

v1.6:
EXISTS clause

v1.7:
PG16

v1.2:
PG15

v1.8:
bug fixes

v1.9:
PG17

Issues & Pull Requests are always welcome!

Apr. 2022

https://github.com/sraoss/pg_ivm

48© 2024 SRA OSS K.K.

● Outer Joins Support
– Outer join has null-extended tuples (= dangling tuples) when the join condition does

NOT meet.

– View maintenance needs additional dangling tuples handling
● Insert into a table → dangling tuples might be deleted

● Delete from a table → dangling tuples might be inserted

Future Plans (1)

SELECT *
 FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 Hayward | 37 | 54 | | 1994-11-29 | |
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

dangling tuple

49© 2024 SRA OSS K.K.

● Partitioned Table Support
– Started investigating what could be a problem

● Other requests from GitHub issues
– Logical Replication Support

● Allow an IMMV in the subscriber be automatically updated, when a table in the publisher
is modified.

– Deferred maintenance
● Instead of automatically update at table changes, allow an IMMV be updated

incrementally later by a manual command etc., with low impact on table update
performance.

– Aggregate with GROUPING SET, CUBE, ROLLUP

Future Plans (2)

50© 2024 SRA OSS K.K.

● pg_ivm: an extension module that provides Incremental View
Maintenance feature for PostgreSQL.
– Incrementally Maintainable Materialized View (IMMV)

– When a base table is modified, the IMMV is automatically and incrementally
updated.

– Materialized views can be updated more rapidly than REFRESH
● As a trade-off, table update performance is affected

– Development is ongoing on GitHub
● Issues & Pull Requests are welcome

Summary

51© 2024 SRA OSS K.K.

Thank you!

Feedback

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50
	スライド 51

@

SRA 0SS

GitHub Stars

@ Star History

Date

O Align timeline

£ star—history.com

@ SRA 0SS

@S5RA0SS

Thank you!

@ Feedback

SRAOSS

Yugo Nagata

PGConf.EU 2024

pg_ivm:

 Extensions for Rapid Materialized View Update

		An extension module that provides Incremental View Maintenance (IVM) feature for PostgreSQL.

		IVM = a way to make materialized views up-to-date rapidly.

pg_ivm

		Software Engineer & Researcher at SRA OSS K.K.

		R&D related to PostgreSQL

		Technical support & Consulting

		PostgreSQL Contiributor

		Author of pg_ivm

Yugo Nagata

		What is Incremental View Maintenance

		What is pg_ivm

		How to use it

		How it works

		Performance

		Development and Future Plans

Outline

Incremental View Maintenance

Incremental Maintenance of Materialized Views (1)

Table R

Table S

View Definition Query

“SELECT … FROM R, S ...”

Materialized View

client

query

rapid response

Results of the view definition query is stored in the database

Incremental Maintenance of Materialized Views (2)

Table R

Table S

modified

stale contents

Needs maintenance after a table is modified.

inconsistent

Materialized View

View Definition Query

“SELECT … FROM R, S ...”

Results of the view definition query is stored in the database

Incremental Maintenance of Materialized Views (3)

Table R

Table S

modified

Updated!

The latest state of table R

Re-compute the materialized view contents using the latest table state

=

REFRESH MATERIALIZED VIEW

Materialized View

View Definition Query

“SELECT … FROM R, S ...”

Incremental Maintenance of Materialized Views (4)

Table R

Table S

modified

changes in Table R

Re-compute the materialized view contents using the latest table state

Compute only the incremental changes in the view and apply it

changes in

the view

apply

Incremental View Maintenance

=

REFRESH MATERIALIZED VIEW

=

View Definition Query

“SELECT … FROM R, S ...”

Materialized View

Updated!

A Simple Example of Incremental View Maintenance (1)

		number

		english

		1

		one

		2

		two

		3

		three

		number

		roman

		1

		I

		2

		II

		3

		III

R

S

		number

		english

		roman

		1

		one

		I

		2

		two

		II

		3

		three

		III

V ≝ R ⋈ S

natural

join

A Simple Example of Incremental View Maintenance (2)

		number

		english

		1

		one → ONE

		2

		two

		3

		three

		number

		roman

		1

		I

		2

		II

		3

		III

R ← (R − ∇R ∪ ∆R)

S

		number

		english

		roman

		1

		one

		I

∇V = ∇R ⋈ S

natural

join

		number

		english

		1

		one

		number

		english

		1

		ONE

∇R

∆R

		number

		english

		roman

		1

		ONE

		I

∆V = ∆R ⋈ S

natural

join

Table R is modified

Calculate the changes in the view

A Simple Example of Incremental View Maintenance (3)

		number

		english

		roman

		1

		one

		I

∇V

		number

		english

		roman

		1

		ONE

		I

∆V

		number

		english

		roman

		1

		one → ONE

		I

		2

		two

		II

		3

		three

		III

V ← (V − ∇V ∪ ∆V)

delete

insert

Update the view by applying the changes

What is pg_ivm

		Incremental View Maintenance (IVM) is not supported in PostgreSQL

→ A set of patches have been proposed.

		Some request to use IVM with the current PostgreSQL

→ pg_ivm developed for providing the feature as not only patches but also an extension module.

		Other purposes:

		Improve opportunities to get feedback for IVM features

		(in future) Provide advanced features

PostgreSQL and Incremental View Maintenance

		You can create

Incrementally Maintainable Materialized View (IMMV)

		IMMV is automatically updated when a underlying table is modified

（= immediate maintenance）

		AFTER triggers are created on tables, and the view is updated from within them.

		You don’t have to write the trigger functions by yourself.

		A view that would take 20 seconds with the normal REFRESH could be updated in 15 milliseconds

		Compatible with PostgreSQL 13, 14, 15, 16, and 17.

Overview of pg_ivm

		The current proposed features for PostgreSQL

		IMMV is implemented by extending the materialized view feature

		Use “CREATE INCREMENTAL MATERIALIZED VIEW” to create it.

		(inner) joins、built-in aggregates （count, sum, avg, min, max）, and DISTINCT

		pg_ivm

		IMMV is implemented as a table

		Use create_immv() function to create it.

		Support more complex views

		A simple subquery in the FROM clause

		CTE (WITH clause)

		EXISTS clause

Proposed feature for PostgreSQL vs. pg_ivm

		Supported

		Inner joins (including self joins)

		DISTINCT clause

		Some built-in aggregate functions (count, sum, avg, min, and max)

		Simple sub-queries in FROM clause, simple CTEs (WITH query)

		EXISTS sub-queries

		Not Supported

		Other aggregates, windows functions

		Outer joins

		Subqueries containing aggregaet or DISTINCT

		HAVING, ORDER BY, LIMIT/OFFSET, UNION/INTERSECT/EXCEPT, DISTINCT ON, TABLESAMPLE, VALUES, FOR UPDATE/SHARE

		IMMVs including other view, materialized view, paritioned table, or foreign table

Supported View Definitions and Restriction of pg_ivm

How to use pg_ivm

		From source

		Get the souce code from GitHub（https://github.com/sraoss/pg_ivm）

		PostgreSQL source code, or devel package （postgresql17-devel, postgresql-server-dev-17, etc.） is required.

		RPM package

		Provided in PostgreSQL Yum Repository（https://yum.postgresql.org/）

Installation (1)

$ make install

$ sudo yum install pg_ivm_17

		CREATE EXTENSION

		the following objects are created.

		Table

		pg_ivm_immv:	The catalog table that stores IMMV information

		Functions

		create_immv :	Create an IMMV

		refresh_immv:	Refresh an IMMV manually

		get_immv_def:	Get the view definition query of an IMMV

Installation (2)

CREATE EXTENSION pg_ivm;

shared_preload_libraries = 'pg_ivm'

postgresql.conf

		Call create_immv function with a relation name and a view definition query

		Correspond to executing CREATE MATERIALIZED VIEW command

		Create a unique index on the IMMV automatically if possible

Create IMMV

test=# SELECT create_immv('mv(aid, bid, abalance, bbalance)',

 'SELECT a.aid, b.bid, a.abalance, b.bbalance

 FROM pgbench_accounts a JOIN pgbench_branches b USING(bid)');

NOTICE: created index "mv_index" on immv "mv"

 create_mv

 10000000

(1 row)

		An entry has been added to the pg_ivm_immv catalog .

Information on IMMV

test=# SELECT * FROM pg_ivm_immv WHERE immvrelid = to_regclass('mv');

 immvrelid | viewdef | ispopulated

-----------+--+-------------

 mv | {QUERY :commandType 1 :querySource 0 :canS.| t

 |.etTag true :utilityStmt <> :resultRelation.|

 |. 0 :hasAggs false :hasWindowFuncs false :h.|

 |.asTargetSRFs false :hasSubLinks false :has.|

 （snip）

 |.nList <> :mergeUseOuterJoin false :stmt_lo.|

 |.cation 0 :stmt_len 0} |

(1 row)

		The view definition can be checked using the get_immv_def function.

		Correspond to psql’s \d meta-command.

IMMV View Definition

test=# SELECT get_immv_def('mv');

 get_immv_def

 SELECT a.aid, +

 b.bid, +

 a.abalance, +

 b.bbalance +

 FROM (pgbench_accounts a +

 JOIN pgbench_branches b USING (bid))

(1 row)

		When a base table is updated, the IMMV is automatically updated.

		Takes 15.448 ms

		REFRESH of a materialized view with the same definition takes more than 20 seconds.

Automatic Update of IMMV

test=# UPDATE pgbench_accounts SET abalance = 1234 WHERE aid = 1;

UPDATE 1

Time: 15.448 ms

test=# SELECT * FROM mv WHERE aid = 1;

 aid | bid | abalance | bbalance

-----+-----+----------+----------

 1 | 1 | 1234 | 0

(1 row)

		Call refresh_immv function with a relation name

		Correspond to executing REFRESH MATERIALIZED VIEW command

		The second argument specifies if new data is generated

（corresponding to WITH [NO] DATA option）

		true: the view definition query is executed to provide the new data,

and automatic update is enabled.

		false: the IMMV is truncated, and automatic update is disabled.

Manual Refresh of IMMV

test=# SELECT refresh_immv('mv', true);

 refresh_immv

 10000000

(1 row)

		psql’s \d meta-command shows it as “Table”.

An IMMV is actually a table

test=# \d mv

 Table "public.mv"

 Column | Type | Collation | Nullable | Default

----------+---------+-----------+----------+---------

 aid | integer | | |

 bid | integer | | |

 abalance | integer | | |

 bbalance | integer | | |

Indexes:

 "mv_index" UNIQUE, btree (aid, bid)

		Same as normal materialized views of PostgreSQL

		This causes an error.

IMMV cannot be directly upated

test=# DELETE FROM mv WHERE aid = 1;

ERROR: cannot change materialized view "mv"

Unlike a normal table,

		Use DROP TABLE command

		Information in the pg_ivm_immv catalog is automatically deleted.

Drop IMMV

test=# DROP TABLE mv;

DROP TABLE

test=# SELECT * FROM pg_ivm_immv WHERE immvrelid = to_regclass('mv');

 immvrelid | viewdef | ispopulated

-----------+---------+-------------

(0 rows)

How pg_ivm works

Overview of View Maintenance

Base talbes

Tables

Materialized View

（IMMV)

Delta

tables

Delta

tables

Delta

tables

Changes

in Tables

ビュー差分

（一次差分）

View Definition

Query

Apply

Changes

in the view

Modification

Extract

Compute

R, S

∇R, ΔR,

∇S, ΔS

∇V, ΔV

∇R, ΔR,

∇S, ΔS

V

Overview of View Maintenance

Base talbes

Tables

Materialized View

（IMMV)

Delta

tables

Delta

tables

Delta

tables

Changes

in Tables

ビュー差分

（一次差分）

View Definition

Query

Apply

Changes

in the view

Modification

Extract

R, S

∇R, ΔR,

∇S, ΔS

∇V, ΔV

∇R, ΔR,

∇S, ΔS

V

AFTER triggers

 & Transition Tables

Rewrite the view definition

query and execute it

Execute SQL internally

Compute

		When an IMMV is created, AFTER trigger are created on all base tables.

		Fired after execution of INSERT, DELETE, UPDATE, and TRUNCATE

		Changes in the table is extracted, and changes in the view is computed within it.

		Changes in table is extracted as Transition Tables

		Two tables that can be referred to within AFTER triggers, and each contains:

		Rows deleted from the table

		Rows inserted into the table

Extracting Changes in Table

		Rewrite the view definition query and execute it.

		Modified table is replaced with the transition table

Compute Changes in View

SELECT ... FROM R, S WHERE ...

SELECT ... FROM new_table_R, S WHERE ...

modified table

Transition Table (rows inserted into R)

View Definition Query：

After Rewritten:

→ The results are ”rows to be inserted into the view”.

		Execute SQL internally

		Use DELETE to delete rows from the IMMV.

		Use INSERT to insert rows into the IMMV.

		Use UPDATE to update aggregate values in the IMMV.

		Index on an IMMV

		An appropriate index is necessary on the IMMV to scan target rows of DELETE and UPDATE efficiently.

		The index is automatically created if possible.

		If the view contains primary key columns of tables or GROUP BY clause.

Apply Changes to View

		Update aggregate values in the view by using aggregate results on table changes.

		Examples:

		count(x) ← count(x) ± [count(x) on table changes]

		sum(x) ← sum(x) ± [sum(x) on table changes]

		avg(x) ← (sum(x) ± [sum(x) on table changes])

 / (count(x) ± [count(x) on table changes])

		Some columns are automatically added to store:

		The number of rows (__ivm_count__) in the whole view and each group.

		For avg aggregate, the results of sum and count aggregates.

Maintenance of View with Aggregates

Changes

in Table

View Definition

Query

Aggregate

on Change

Aggregates

in the View

apply

		Tuples are inserted into a table

		min(x) ← least (min(x), [min(x) on inserted rows])

		max(x) ← greatest (max(x), [max(x) on inserted rows])

		Tuples are deleted from a table：

		When existing min(x) or max(x) value need to be deleted from the view:

 → Re-compute the new value from the latest table.

		Otherwise: nothing to do

Aggregate: min(x) & max(x)

10

min values

in the view

5, 15, 20

values inserted

into the table

5

the min value

in table changes

least

5

the new min

value

		A column （_ivm_count_） that stores the number of rows for each distinct row is automatically added.

		The count value is updated when a table is modified.

		When the count becomes zero, the row is removed from the view.

Maintenance of View with DISTINCT

		When a base table is TRUNCATEed,

the IMMV is also TRUNCATEed.

		If any base table is empty, the contens of the view also must be empty.

		Exception: if the view contains an aggregates without GROUP BY;

		The view always has only one row.

		After a base table is truncated, the view has a row whose column values are NULL.

TRUNCATE

		Possible situations

		Updating CTEs

		Triggers

		Foreign key constraint

		Self-join shares the same situation

		Tables appearing in a query repeatedly ≒ Different tables with the same contents

		In this case, both pre-update and post-update states of tables are needed to compute incremental changes in the view.

		Example: JOIN view

		View definitnion　　　 V ≝ R ⋈ S

		Tables modifications　　　R ← R ∪ ∆R, S ← S ∪ ∆S

		Incremental change　 ∆V = (∆R ⋈ S_old) ∪ (R_new ⋈ ∆S)

Simultaneous Multiple Tables Modification

WITH x AS (INSERT INTO r VALUES(1,10) RETURNING 1),

　　 y AS (INSERT INTO s VALUES(1,100) RETURNING 1)

SELECT 1;

		Only “post-update” state is available in AFTER trigger functions

		“pre-update” state can be obtained by using a saved “snapshot”

		Save the current snapshot before the table modification (in BEFORE trigger)

		When scanning the table, call ivm_visible_in_prestate function in WHERE clause

		This function returns true if a row is visible with the given snapshot.

→ The results with deleted rows append is “pre-update” state

How to get “pre-update” state of table?

SELECT… FROM tbl

WHERE ivm_visible_in_prestate(t.tableoid, t.ctid, matview_oid);

Performance

		Q01: Aggregate on a large table

		When we use a normal materialized view:

		Update one row in lineitem： 2 min sec.

		REFRESH: 11 sec.

Performance Evaluation Using TPC-H Query (1)

CREATE MATERIALIZED VIEW mv01 AS

select

	l_returnflag,

	l_linestatus,

	sum(l_quantity) as sum_qty,

	sum(l_extendedprice) as sum_base_price,

	sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

	sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,

	avg(l_quantity) as avg_qty,

	avg(l_extendedprice) as avg_price,

	avg(l_discount) as avg_disc,

	count(*) as count_order

from

	lineitem

where

	l_shipdate <= date '1998-12-01' - interval '78' day

group by

	l_returnflag,

	l_linestatus;

tpch=# UPDATE lineitem

 SET l_quantity = l_quantity * 2

 WHERE (l_orderkey, l_linenumber)

 = (3653,1);

UPDATE 1

Time: 2.077 ms

tpch=# REFRESH MATERIALIZED VIEW mv01;

REFRESH MATERIALIZED VIEW

Time: 11277.638 ms (00:11.278)

※ scale factor = 1

（lineitem: 6M rows）

Panasonic Let’s note CF-SV7

CPU: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz (8 core)

DRAM: 16GB

Storage: SSD

OS: Ubuntu 22.04.4 LTS (64bit), linux kernel 5.15.0-124-generic

PostgreSQL 17 + pg_ivm 1.9

Performance Evaluation Using TPC-H Query (2)

SELECT create_immv('immv01',

'select

	l_returnflag,

	l_linestatus,

	sum(l_quantity) as sum_qty,

	sum(l_extendedprice) as sum_base_price,

	sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

	sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,

	avg(l_quantity) as avg_qty,

	avg(l_extendedprice) as avg_price,

	avg(l_discount) as avg_disc,

	count(*) as count_order

from

	lineitem

where

	l_shipdate <= date ''1998-12-01'' - interval ''78'' day

group by

	l_returnflag,

	l_linestatus');

tpch=# UPDATE lineitem

 SET l_quantity = l_quantity * 2

 WHERE (l_orderkey, l_linenumber)

 = (3653,1);

UPDATE 1

Time: 19.635 ms

		Q01: Aggregate on a large table

		When we use a normal materialized view:

		Update one row in lineitem： 2 min sec.

		REFRESH: 11 sec.

		pg_ivm：

		Update one row in lineitem

 & automatic update of IMMV： 20 min sec.

View update: 500x+ faster

※ scale factor = 1

（lineitem: 6M rows）

Performance Evaluation Using TPC-H Query (3)

SELECT create_immv('immv09',

'select

	nation,

	o_year,

	sum(amount) as sum_profit

from

	(

		select

			n_name as nation,

			extract(year from o_orderdate) as o_year,

			l_extendedprice * (1 - l_discount) -

 ps_supplycost * l_quantity as amount

		from

			part, supplier, lineitem, partsupp, orders, nation

		where

			s_suppkey = l_suppkey

			and ps_suppkey = l_suppkey

			and ps_partkey = l_partkey

			and p_partkey = l_partkey

			and o_orderkey = l_orderkey

			and s_nationkey = n_nationkey

			and p_name like ''%sandy%''

) as profit

group by

	nation,

	o_year');

tpch=# UPDATE lineitem

 SET l_quantity = l_quantity * 2

 WHERE (l_orderkey, l_linenumber)

 = (3653,1);

UPDATE 1

Time: 32.474 ms

		Q09: Aggregate on six tables join

		When we use a normal materialized view:

		Update one row in lineitem： 2 min sec.

		REFRESH: 5 sec.

		pg_ivm：

		Update one row in lineitem

 & automatic update of IMMV： 32 min sec.

※ scale factor = 1

（lineitem: 6M rows）

View update: 150x+ faster

		IMMV can be updated more rapidly than REFRESH, but it affects table update performance.

		Suitable use case:

		The response time of table updates is not so critical, and the latest view state is required immediately after the table update.

		When large data is loaded to a table, disable automatic update of IMMV.

		Performance with Concurrent Transactions

		When concurrent transactions update an IMMV, an exclusive lock is acquired to avoid inconsistent results.

		READ COMMITTED isolation level: one transaction is waited.

		REPEATABLE READ isolation level: one transaction is aborted.

Performance Trade-Off

SELECT refresh_immv('mv', false);

… It also affects the table update performance.

Development of pg_ivm

		GitHub：https://github.com/sraoss/pg_ivm

		Developer： IVM Development Group

		License： PostgreSQL License

Development of pg_ivm

v1.0:

 JOIN,

DISTINCT,

PG14

v1.1:

 TRUNCATE,

refresh_immv,

PG13

v1.3:

get_immv_def

bug fixes

v1.4:

bug fixes

961 stars

(Oct 25, 2024)

v1.5:

CTE

v1.6:

EXISTS clause

v1.7:

PG16

v1.2:

PG15

v1.8:

bug fixes

v1.9:

PG17

Issues & Pull Requests are always welcome!

Apr. 2022

until now

as of today

		Outer Joins Support

		Outer join has null-extended tuples (= dangling tuples) when the join condition does NOT meet.

		View maintenance needs additional dangling tuples handling

		Insert into a table → dangling tuples might be deleted

		Delete from a table → dangling tuples might be inserted

Future Plans (1)

SELECT *

 FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;

 city | temp_lo | temp_hi | prcp | date | name | location

---------------+---------+---------+------+------------+---------------+-----------

 Hayward | 37 | 54 | | 1994-11-29 | |

 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

dangling tuple

		Partitioned Table Support

		Started investigating what could be a problem

		Other requests from GitHub issues

		Logical Replication Support

		Allow an IMMV in the subscriber be automatically updated, when a table in the publisher is modified.

		Deferred maintenance

		Instead of automatically update at table changes, allow an IMMV be updated incrementally later by a manual command etc., with low impact on table update performance.

		Aggregate with GROUPING SET, CUBE, ROLLUP

Future Plans (2)

		pg_ivm: an extension module that provides Incremental View Maintenance feature for PostgreSQL.

		Incrementally Maintainable Materialized View (IMMV)

		When a base table is modified, the IMMV is automatically and incrementally updated.

		Materialized views can be updated more rapidly than REFRESH

		As a trade-off, table update performance is affected

		Development is ongoing on GitHub

		Issues & Pull Requests are welcome

Summary

Thank you!

Feedback

マスター タイトルの書式設定

10/29/24

10/29/24

		アウトラインテキストの書式を編集するにはクリックします。

		2レベル目のアウトライン

		3レベル目のアウトライン

		4レベル目のアウトライン

		5レベル目のアウトライン

		6レベル目のアウトライン

		7レベル目のアウトライン

