From VMs to Cloud-Native
PostgreSQL in Kubernetes

A Case Study of Migrating a
Medium-Sized Application

2024 David Pech

About Me

David Pech

ORACLE adWs
Cloud Infrastructure " ‘7

<+ wrike

B2B E-commerce Application

- 4 different projects with the same codebase

- Already containerized

- Legacy PHP7, Java for ETL and API endpoints
- Kafka (CSV to event-driven ETL in-progress)

- MongoDB, Redis

- App uses primary for 95% of queries

- Recalculate multiple times a day 15M prices + fluctuating stock levels
- Benefits based on customer order history

- >several 100M EUR annual turnover

B2B E-commerce Application

- 50 regular - 80 peak req/s for backend / project
attacks / scans - up to 200 peak req/s, doubles before X-mas
- 2.000 regular - peak 5.000 TPS / project

heavy caching .

‘ ” |
‘ 1
\ \
|
A I !
‘ I
i ‘
7777777
| |
|
| |
50000 30reqls | | | ari |
prmem AT a A «\m\ﬁ —
v | L | M \)N M:;\;&/\M‘:\’/MNM/VW‘/"\/A\/WJ\.W/‘ sl V\V\MMW

nnnnnn

Organizational Context

- 0 Full-Time Postgres DBAs (although 3 Oracle ones)
- Application itself already migrated to K8s with success

- Client willing to invest and open to innovation

But running costs cheap as possible
(No strict SLOs)

- Unfriendly transfer of ownership from contractor
- Kubernetes adoption
- Zabbix => Prometheus migration for monitoring

Initial Postgres Setup

- OLTP 4 DBs around 70 GB each

- Traffic split: 50%, 25%, 13%, 12%

- Mixed workload of regular traffic + batch data-loading

- Ubuntu 20.04 LTS, PG13 - Version practically frozen

- no proxy / pooler

- OnPrem VmWare VMs

- Networking - directly to primary (controlled via SaltStack /etc/hosts)
- DR plan - manual, never tested on PROD

- Backups - custom pg_basebackup Bash to barman -> S3

- Worthy mentions: pgpool-Il dropped

My Starting Point

Patroni experience:

corrupted DB with my 1st switch-over (!)

operating 10 DBs, internal tooling mostly
non-trivial setup, etcd ops painful
networking to primary

... I've never fully trusted Patroni (but probably
not Patroni's problem).

Kubernetes

- operating 8 cluster OnPrem + 6 Oracle
Kubernetes Engine
- Kubestronaut

Kubernetes-operators

- Bitnami chart - single instance - no-PROD
- operating 4 DBs with Zalando operator
- operating 20 DBs with CloudNative PG

Storage for K8s

- Oracle Cloud storage
- Rook/CephFS OnPrem storage

Client Motivation

- Client willing to advance technically & Good relations
- Good track record with K8s app migration (Cl pipelines, ArgoCD)

- Advocating: general upgrade, H-A, logical long-term next step

- ... yet at the same time being not too critical to current setup

- Several L1 incidents in few years, none related to Postgres (typically VmWare infra)
- possible improvement with migration

=> "no big deal" from client's perspective

Client sees Kubernetes as "l can move the project to different hosting anytime".

Our Motivation

- Gradual Kubernetes adoption - stateful is next logical step

- We are not Postgres experts

- Current solution is obsolete, brings risks

- Number of services, number of users, data - grows over time

- Let's get the work done in the most reliable and stable way

Managed-Postgres vs. Patroni vs. Kubernetes-operator

Operator Research

Long story: Zalando operator, PGO, StackGres, CloudNativePG

Short story: CloudNativePG (EDB)

- Docs ++
- Enterprise-ready

- (Mature?)

Wy S
\
'GROWING CLOUD NATIVE TOGETHER

DBaa$S in 2024: Which PostgreSQL operator for Kubernetes to select for
your platform?

O

CloudNativePG (CNPG) vs. Patroni

- etcd already in K8s

- can leverage K8s nodes

- can leverage GitOps (ArgoCD)
- barman (backups)

- new tool for difficult and complex task

- basic operations can be passed to devs

etcd operating

need Ansible / Puppet / X node boostrap
manual installation / first setup

barman (backups)

standard, proven track record (!)

Controlling the DB cluster

Regular operations

- operate via CustomResourceDefinition (CRD = YAML)
- Specify users, dbs
- Bootstrapping options

- .C.).hange -> Edit YAML -> Operator propagates the change
- Grafana dashboard - observability

DBA

k9s (like 'mc' for K8s)
kubectl cnpg status
kubectl cnpg promote

(psql as a last option) kubectl cnpg psql (--replica)

sion: postgresql.cnpg.io/vl

wescore-dev-app-of-apps

- robot_zmon
- wescore_test_user
- amrt_test_user

type: monolith

postInitTemplateSQL:
- CREATE EXTENSION timescaledb;
na

riginal-dev-cluster
password:
key: password
postgres.wescore-dev. credentials. postgresql.acid.zalan.do

No data

No data No data

[
{

Insights for Developers using ArgoCD

cluster

acc-mocz

ayear

pvc

podmonitor

pdb

role

svc

acc-mocz-1

acc-mocz

acc-mocz

acc-mocz-primary

acc-mocz

acc-mocz

5 Secrets

3 Services

a year

6 months

a year

a year

a year

acc-mocz-1%

SUMMARY EVENTS

CONTAINERS

INIT CONTAINERS

acc-mocz-1e®

pod

:59:
:59:
:59:
159:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
:59:
159:
:59:
:59:
:59:
:59:
09:
1591
:59:
:59:
:59:
:59:
=59:
159:
:59:
:59:
:59:
:59:
:59:
2R

sV oELETE I

0GS TERMINAL

2SN Ela :
LoGs TERM

Ignore minSyncReplicas to enforce self-healing”,"logging_pod":"acc-mocz-1"
Cluster status","controller”: :"postgresql.cnpg. io

":"acc-mocz-1", " reason" : postmaster start up"}
1300\nCatalog version numb
/var/l1b/pastgresq\/data/Pgdata/pcStmaster pid
cc-mocz-1", "err":"failed to connect to host:
:"cluster”,"controllerGroup": "postgresql.c
redirecting log output to logging collector
Future log output will appear in directory
rd" 2024-04-10 00:59:31.357 U
2024-04-10 00:59:31.357 U

00:59:31.3:

"syncReplicas": -1, "minSyncR

DB not available, will retry","logging_pod"
Instance is still down, uill retry In 1 second, controlle

L0G: ending log output to stde /co

2024-04-10 00:59:31. 357 UTC [21] HINT: Future log output will G0 to 'Log destmat1

0gging_pod" : "acc-mocz-1", "record"
0gging_pod" : "acc-mocz-1", "record":

force self-he ac

ing_pod"

Replicas to enforce‘self healing","logging_pod

Replicas to enforce self- heal)ng
Replicas to enforce self-healing" “logoin
ord"

Verify Operator Quality

- Reliability (Chaos) testing using Litmus + Bash

Replica recreate
Originally:
- Destroy replica VM in VmWare

Kill one the replicas together with PV (lose its

data), force its reprovisioning (pg_basebackup). ' LitmusChaosCon
Wait for replica to become online before
continuing. ’
- Metrics: Availability (Primary, Replica), Will your POStg reSAL operator
Avg/Mean time to reprovision replica crack under chaos?
Assumptions

- Primary Read-Write is not affected
- Replica is affected minimally

David Pech

Myth - Containers Are Ephemeral

Containers == Unix process with constraints

calico-node-bklzl
kube-system
2000001000
system—-node-critical
calico-node

Tue, 24 Jan 2023 16:40:17 +0100

Running

gitlab-postgres gitlab-postgres—prod-1 Running
Running

wes—db wes—postgresql-0 Running
wescore—dev-postgres wescore-dev-0 Running
wescore—dev—-postgres wescore—-dev-1 Running
escore-dev-postgres wescore-dev-timescaledb-1 Running
wescore—prod—-postgres wescore—-prod-0 Running
escore—-prod-postgres wescore-prod-1 Running
wescore-test—-postgres wescore—-test-0 Running
escore-test-postgres wescore-test-1 Running

(21d ago)

OO ONOOOOODOO®

Myth - Containers Are Less Performant

Prague PostgreSQL Developer Day (p2d2.cz) 2024 dialog:

"Are you considering some POC in Kubernetes?"
One of the most senior Czech PG DBAs:

"In order to run Postgres in a container, | would probably first need to
'decontantainerize it'."

Myth - Containers Are Less Performant

(Same argument was against cloud, right?)
Just untrue. Having hands-on experience needed.

Local volumes in Kubernetes = Game changer.

G. Bartolini: Local Persistent VVolumes and PostgreSQL usage in Kubernetes

https://www.2ndquadrant.com/en/blog/local-persistent-volumes-and-postgresql-usage-in-kubernetes/

Myth - Kubernetes Can Easily Lose Data

Persistent Volumes (PVs) have .metadata.finalizers|]

- must be explicitly removed
- (but PVs are just YAML representation of real data somewhere)

BUT default StorageClass reclaim policy: Delete (vs. Retain)

Myth - Container Will Lose All Changes on Restart

Well, of course!

- You don't have root inside container

- Current trend: read-only root FS

- You don't use 'kubectl exec' (ssh to container)
- Container restarts with PID 1 Kill

=> Design your container, Deployments etc. so they contain everything

Myth - Kubernetes Can Kill My Pod Anytime

- Well defined order of "victim selection" (preemption, PriorityClass)

- Simple rule: .resources.limits == .resources.requests
(Will make container the highest priority in "standard cluster”)

- Problem:

resources.requests: { cpu: 1.0, memory: 1Gi }
resources.limits: { cpu: 2.0, memory: 2Gi }

(Pod might be placed to node with only 1-2Gi of free memory -> OOMKilled)

Myth - Kubernetes Needs Constant Upgrades and Breaks

- Upgrade breaking changes - significantly matured, last 2 years minimal

disruptions
API maturity level + commitment
(Tooling around)

- No LTS, 3 version per year, 3 most recent version supported
(Yes, you reeeHe should upgrade at least once a year)

Myth - Database in K8s is a Niche Idea

- Data on Kubernetes community (DoK), 2021 report

In September 2021, we surveyed over 500 Kubernetes users to understand the types and volume of data-intensive
workloads being deployed in Kubernetes, benefits and challenges, and the factors driving further adoption.

Kubernetes has become a core part of IT — half of the respondents are running 50% or more of their production
workloads on it, and they are very satisfied and more productive as a result. The most advanced users report 2x or
greater productivity gains.

90% believe it is ready for stateful workloads, and a large majority (70%) are running them in production with

databases topping the list. Companies report significant benefits to standardization, consistency, and management as
key drivers.

Note: Nobody suggests to run 100% of your workloads in Kubernetes.

https://dok.community/dokc-2021-report/

Migration Approach

- Planning

- Verify & tune solution (UAT)

- Near-zero migration on PROD
- Reliability testing

Plan: On-Prem Block Storage

External (VmWare, Proxmox provisioner) - take it if available

hostPath PVs
local-path-provisioner

Rook/Ceph - need expert know-how
Possibly beneficial for reads
Hard to setup and learn
Difficult to estimate or evaluate performance under load

Note: can be also static - provision PVs up-front.

Plan: On-Prem Networking

In-cluster only, or exposed outside Kubernetes cluster?
External HW LoadBalancers - take them if available

- kube-vip - VirtuallP

- MetalLB

- NodePort

- (not required when sharing cluster with apps)

- CNI - Cillium

Plan: Pgbouncer or not?

- max_connections = 400, used around 100

- We don't need it prior to migration

- Another layer of complexity

- PHP uses permanent connection under the hood (pg_pconnect) + fixed sizes
of PHP-FPM pools

- Apps use kind:Service directly in-cluster

Plan: Kubernetes (K8s) Cluster

Managed Service - take it
(Managed Control plane-only SaaS also available)

Standalone cluster for DBs (prefered)
- +3 VMs for control-plane
- separated blast radius
- more management + networking
Shared with apps
- at least use .nodeSelector and separate on Node level (noisy neighbours)
- don't mix apps with DBs on the same node

Plan: Node-Pod considerations - VM setup

‘Replica

Pl’imafy B0 teereenenn 50
<
DR
fppe PAMAIY 25 b evvnvnnns Replica
/ r:/(l,\de & Cloud S3
o Backup + WAL
LA b
f
f Primary | ... Repncaq
13+12
Lz

13+12
i,

Plan: Node-Pod considerations

- Our approach: (Traffic split: 50%, 25%, 13%, 12%)
- 1 primary+2 replicas? or 1 replica?
- Smaller (single DB Pod) or larger nodes?

Note: we had several incidents on storage

K8s cluster NodePool

infra layer - more replicas won't help.

DB 13-1 DB 12-2
DB 50-1 DB 25-1

Cloud S3
Backup + WAL

DB 12-1

DB 25-2 DB 50-2

DB 13-2

Plan: Node-Pod Affinity

(If possible) schedule Pod to Node that does not contain other Pod like this.

apiVersion: postgresql.cnpg.io/v1l
. . kind: Cluster
Also considered: metadata:
name: cluster—example
spec:
instances: 3

- Any Other DB Cluster imageName: ghcr.io/cloudnative-pg/postgresql:17.0
- C”pglO/lnStanceRO|e prlmary af(farj';gti){)ell:’odAntiAffinity: true # Default value

topologyKey: kubernetes.io/hostname # Default value
podAntiAffinityType: preferred # Default value

storage:
size: 1Gi

Plan: Node-Pod considerations

- Noisy neighbours conderations

- Bottom line - in an emergency - 2 DBs must share a node

- Considered also separate cluster of "smaller replicas"

- Automatic failover mindset change

- s it better to use same node and pod sizes, or should we "save $$$"?

- Great CNPG docs on architectural consideration
- Best-in-class: Shared-nothing architecture

Plan: Disaster Recovery & Backup

- We don't trust OnPrem infra -> barman backup and WAL archive to S3
- <100GB quite easy to download, off-site backup

DR in cloud from scratch (Terraform managed cluster, GitOps drop-in YAMLSs,
restore from S3, tested < 40 min) - client needs several hours for decision

Note larger DBs or better hosting: CSI snapshotting

. spec:
Tuning [
tablespaces:
— name: atablespace
Temp tablespace to a separate partition St:rage=16,
1ze€. 10

] temporary: true
(use local scratch disks) porary

CPU to HW core allocation (kubelet --cpu-manager-policy)
Resource Limits - short story: don't overprovision on PROD

Storage - same logic as for regular VMs

Tunlng POStg res Sp:;c)l:wemeralVolumesSizeLimit:

shm: 1Gi

- Shared memory mount shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec, relatime,size=xikx*x)
- Direct access to most of GUCs

- Preloaded libs - auto_explain, pg_stat statements, pgaudit, pg_failover_slots
- pg_repack - requires custom image

- ALTER SYSTEM - limited and discouraged
- Mostly similar to Patroni

Timescale DB, PostGIS, ... - possible

Other extensions also possible via custom PG image

apiVersion: postgresql.cnpg.io/vl
kind: Cluster
metadata:
labels:
app.kubernetes.io/instance: wescore-dev-app-of-apps
name: wescore-dev-timescaledb
namespace: wescore-dev-postgres
spec:
imageName: ghcr.io/imusmanmalik/timescaledb-postgis:15-3.4
instances: 1
postgresql:
shared_preload_libraries:
- timescaledb
- pg_stat_statements
storage:
size: 10Gi

Understanding Pod Memory Usage

- 2 "schools of Postgres Memory Management"

- around 25 % of RAM to shared-buffers, let OS handle FS
- around 80 % of RAM to shared buffers

- VM: MemC | [{00 LELEEE e e e e el 117.216/23.561

total used free shared buff/cache available
Mem: 24082 1062 670 6291 22349 16309
Swap: 4095 359 3736

shared_buffers = 6GB

Containers:

Memory Usage (w/o cache)

1.40 GiB

shared buff/cache available

737 3612 3069 AR

477 MiB

0B
04:00 05:00

== gitlab-postgres-prod-1 = total

Verify: Benchmarking

kubectl cnpg fio <fio-job-name> -n <namespace>

kubectl cnpg pgbench <cluster-name> —— —-time 30 —--client 1 ——jobs 1

This can't be easier...

Near Zero Downtime Migration Logical Replication

VMs (PG13) -> CNPG (PG16) . : .

Publisher Subscriber
- Create empty cluster
- Setup logical replication
- Cutover
G. Bartolini: CloudNativePG Recipe 5 - How to migrate your PostgreSQL E]_ e %

database in Kubernetes with ~0 downtime from anywhere y

Alternative: Upgrade In-Place and Restore Backup

Upgrade VMs in-place (PG13 -> PG16)
Provision new PROD cluster from backups
Use S3 WAL archive

Around 2 hour of downtime

(Same PG version required)

Operator Misbehaving / Break the Glass Scenario

Fencing - marking PG node or cluster - Postgres will remain disabled, Pod runs

(Not enough for us, Hibernation is too much) - Attach Pod to same PVC - as root

apiVersion: v1 metadata:
kind: Pod name: cluster—-example-no-reconcile
metadata: annotations:

creationTimestamp: null cnpg.io/reconciliationLoop: "disabled"
labels: spec:
run: pg-fixer L
name: pg-fixer
namespace: cnpg-cluster
spec:
containers:
— command:
- /bin/bash
- -Cc
- sleep 2d
image: ubuntu
name: pg-fixer
resources: {}
volumeMounts:
- mountPath: /var/lib/postgresql/data
name: pgdata
dnsPolicy: ClusterFirst
restartPolicy: Always
volumes:
— name: pgdata
persistentVolumeClaim:
claimName: mycnpg-2 # : possibly different PVC

root@pg-fixer:/# 1ls

bin 1lib 1libé64
root@pg-fixer:/# cd /var/lib/postgresql/data/
root@pg-fixer:/var/lib/postgresgl/data# 1ls

root@pg-fixer:/var/lib/postgresql/data# cd pgdata/
root@pg-fixer:/var/lib/postgresql/data/pgdata# 1s

cnpg_initialized-mycnpg-2 override.conf pg_ident.conf
backup el.old current_logfiles
backup_manifest custom.conf

pg_hba.conf

root@pg-fixer:/var/lib/postgresql/data/pgdata# apt search amcheck
Sorting... Done
Full Text Search... Done
root@pg-fixer:/var/lib/postgresql/data/pgdata# apt install I

Break the Glass Scenario - Trust the Operator

Let's think about full-autopilot

- SW Bug -> CrashLoopBackOff, verify on UAT
Postgres

Kubernetes
CloudNativePG

- Failover / Switchover, split Brain
There are >1 endpoints to kind:Service
(Note edge cases - up to 10s can Pod receive traffic after Endpoint had changed)

- Reprovision new PG node - around 20 mins on 1Gbit network
Currently still manual:

- Password, TLS cert rotation

Horror Stories on PROD

nothing here

Just works ™

Expected Problems

- Out of disk space -> PVC resize
May switch-over depending on the CSI

- Pod restart -> reliability testing

- Node goes down -> reliability testing

- Control Plane goes down (no problems)

- Networking disruptions

- Data corruption -> reliability testing (backups)

- Query Performance problems -> pg_stat statements

Comparing Before and After

Before:

- Uneven VM sizes (6x)
- 1 manually managed VM per DB
- Ad-hoc managed CPU+RAM

- DR fully manual, never verified

- Backup operations planed in-place
- No updates

- Root access to Devs on VMs

After:

same Nodes (4x)

2-4 DBs per uniform Kubernetes Node
Large vs Small (2 Large) - 2x increased
CPU+RAM for Nodes in total

Automatic failover

Backup can be easily bootstrapped next to
running PROD, verified and discarded
Periodic minor version updates

Pod level access and better insights for
Devs

Resume

- K8s nodes easier to maintain to VMs - Several months of research, verification
- Devs basic insight to PG clusters
- GitOps for DB

- Still niche tech (at least in C2)
- We don't like being early adopters

- Surprisingly easy to use
- Many DBA manual task in YAML instead
(not time-saving for the first time)

Next Steps

- Offload more traffic on replicas
- Batch data load with locks -> event-driven Kafka
- Performance degradation mitigations

- (With more PROD experience) Offer SLOs to client

- More tooling around Cluster.status (Do we have a fresh backup, ...)

It's Still Postgres....

Containers don't change how we should handle it.

Hi folks!

Curious about this error when swapping the Cluster.spec.imageName from
and I'm seeing:

admission webhook \"vcluster.cnpg.io\" denied the request: Cluster.cluster.cnpg.io \"flattrack-sample-postgres\" is invalid:
spec.imageName: Invalid value: 170000: can't upgrade between majors 160004 and 170000

Are upgrades between Postgres versions unsupported?

We are hiring

Help us manage:

120 product clusters

top DBs 10 kQPS, average prime time load 4-6 kQPS
productuction dataset ~ 27TB (without backups and replicas)

®' Thank you!

