
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dissimilarity search: implementing in-
memory vector search algorithms for
PostgreSQL
Jonathan Katz
(he/him)
Principal Product Manager – Technical
AWS

1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

[0.5, 0.5]

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Magnitude

|| [0.5, 0.5] || = √ (0.52 + 0.52) = 0.70710

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Direction

Magnitude

[0.5, 0.5]

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 7

SELECT city_name
FROM conferences
WHERE conference_name LIKE 'PGConf EU%'
ORDER BY
 conference.geocode <-> '(38.0004,23.7195)'::point
LIMIT 3;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 9

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Foundations of vector search

• Vectors in "vector space" (search area) must all have the same number of
dimensions

§ Each dimension should be comparable to each other

• Distance function defines proximity

§ Distance is always ≥ 0

§ Distance from a vector to itself is 0

10

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CUSTOMER

Can you find 5 distributors of
green olives near PGConf.EU
2024?

Human: You are an agent who manages orders and returns on an online retail website. Given a set of APIs, Conversation History, and U
executing the set of APIs in order to fulfill user input.

Tags

Emphasis
(capitalized)

DO NOT go into a loop and return exact same apis with exact same api_input as previous observation
Convergence

criteria

Provide only ONE action per $JSON_BLOB, as shown:

{ "api": $API_NAME, "verb": $HTTP_VERB, "api_input": { $PARAMETER: {"value": $INPUT, "source": $SOURCE} } }

Format
(JSON)

Conversation History: Below is the history of the conversation between Human and AI and the
History format

1

2

3

4

5

DEVELOPER CREATED AGENT

Yes, here are a list of distributors
based on proximity…

Valid "api" values are GetOrderHistory::GetProductCatalogue, GetProductAvailability
- DO NOT return an api if all required parameter values are not present.
- DO NOT replace the placeholders in the api_name with api_inputs.
- Return available parameters in api_inputs ONLY.

Valid "verb" is HTTP verb used in "APIs" e.g. GET, PUT etc

Valid "api_input" as json from "User Input", "Observation" or "Conversation History".

- NEVER assume value for any parameter, mark the value as "null" if not available.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval-augmented
generation (RAG)

Configure foundation model
to interact with your data

A N S W E RQ U E S T I O N

K N O W L E D G E
B A S E S

F O U N D A T I O N
M O D E L

Where can I buy green
olives in Athens?

Product catalog

Store data

You can buy green
olives in the following
places in Athens…

Sorry, I don't know

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are embeddings?
Source

domain-
specific data

Tokenization Vectorization Store in vector
data store

Perform
semantic
similarity

search

Include
semantically

similar context
in prompt

Embeddings: When vector elements are semantic, used in generative AI

Documents

Audio/video

Images

Semantic elements:
• Words, phrases
• Paragraphs, documents
• Scenes, song sections
• Faces, detected

picture elements
• And more

0.35 0.1 0 0.9 001.0 00 0001.0 0 0…

0.35 0.1 0 0.8 001.0 00 0001.0 0 0…

0.15 0.1 0 0.7 001.0 00 0001.0 0 0…

3D simplified representation. Embeddings can have thousands of
dimensions. Source: https://daleonai.com/embeddings-explained

https://daleonai.com/embeddings-explained

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How embeddings are used

Document
chunks

Amazon Titan
Embeddings

PDF
document

User

Embeddings Amazon
Bedrock FM

1

4

Question

Question + Context

Response

2 3

5

6

7

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with larger vectors

• Generation time

• Size

• Compression

• Query time

Blue elephant vase
that can hold up to
three plants in it,
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without searching
all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Recall: 80%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

ANN indexing algorithm types

Cluster Graph

Hash Tree

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index layout in memory

18

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index layout in a database

19

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index layout in a database

20

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index size exceeds available memory

21

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index size exceeds available memory

22

1 2 3 4 5 6 7 8

9 10 11 12 21 22 23 24

17 18 19 20 13 14 15 16

25 26 27 28 29 30 31 32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index size exceeds available memory

23

1 2 3 4 5 6 7 8

29 30 31 32 21 22 23 24

17 18 19 20 13 14 15 16

25 26 27 28 9 10 11 12

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Where memory and storage diverge

• Continuous allocations vs. pages

• Data layout on disk

• Percentage of index in memory

• Hardware acceleration strategies (CPU vs. GPU)

24

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vector search design principles for PostgreSQL

• Take shortcuts, where applicable

 Design for 8KiB blocks (page size)

• Leverage PostgreSQL infrastructure

 Understand your tradeoffs

25

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports HNSW & IVFFlat indexing, with
options for scalar and binary quantization Distance operations include

Cosine, Euclidean/L2, Manhattan/L1,
Dot product, Hamming, Jaccard

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

https://github.com/pgvector/pgvector

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example pgvector query

SET hnsw.ef_search TO 60;

SELECT id, text_chunk

FROM documents

ORDER BY

 embedding <=> '[0.003421, -0.23053, 0.402153, …]'::vector

LIMIT 10

27

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

28

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

29

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data type

typedef struct Vector

{

 int32 vl_len_; /* varlena header (do not touch directly!) */

 int16 dim; /* number of dimensions */

 int16 unused; /* reserved for future use, always zero */

 float x[FLEXIBLE_ARRAY_MEMBER];

} Vector;

30

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL Infrastructure: 🍞 TOAST

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism for storing
data larger than 8KB

§ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:

§ PLAIN: Data stored inline with table

§ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
– pgvector default before 0.6.0

§ EXTERNAL: Data stored in TOAST table when threshold exceeded
– pgvector default 0.6.0+

§ MAIN: Data stored compressed inline with table

31

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualizing TOAST for pgvector

32

12,"jkatz",[0.3213,0.
12321,0.12312,0.12
321,0.12321,0.1232
1,0.1123123,0.1232
1,0.12321,0.1232,0.
12312,0.12321,0.12
321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1
2312,0.12321,0.123
21,0.12321,0.11231
23,0.12321,0.12321
,0.1232,0.12312,0.1
2321,0.12321,0.123
12]

EXTENDED / EXTERNAL

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tradeoffs: Impact of TOAST on vector data

• Traditionally, TOAST data is not on the "hot path"

• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages

33

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Space utilization on a page

34

Dimensions Vectors / Page Wasted Space (B)
128 15 308
256 7 916
384 5 428
512 3 1,988
768 2 2,000

1,024 1 4,060
1,536 1 2,012
2,000 1 156

PAGE_SIZE – PAGE_HEADER – (VECTORS * 4) – VECTORS * (4 * DIMS + 8)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

35

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Distance functions / operators

36

Euclidean / L2

Cosine

Inner Product

Manhattan / Taxicab / L1

Hamming

Jaccard

<->

<=>

<#>

<+>

<~>

<%>

CREATE FUNCTION
 l2_distance(vector, vector)
RETURNS float8
 AS 'MODULE_PATHNAME'
 LANGUAGE C
 IMMUTABLE STRICT
 PARALLEL SAFE;

CREATE FUNCTION
 cosine_distance(vector,
vector) RETURNS float8
 AS 'MODULE_PATHNAME'
 LANGUAGE C
 IMMUTABLE STRICT
 PARALLEL SAFE;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL Infrastructure: Function definitions
FUNCTION_PREFIX PG_FUNCTION_INFO_V1(l2_distance);

Datum

l2_distance(PG_FUNCTION_ARGS)

{

 Vector *a = PG_GETARG_VECTOR_P(0);

 Vector *b = PG_GETARG_VECTOR_P(1);

 CheckDims(a, b);

 PG_RETURN_FLOAT8(sqrt((double)

 VectorL2SquaredDistance(a->dim, a->x, b->x)));

}

37

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shortcut: SIMD using compiler autovectorization
VectorCosineSimilarity(int dim, float *ax, float *bx)

{

 /* ... */

 /* Auto-vectorized */

 for (int i = 0; i < dim; i++)

 {

 similarity += ax[i] * bx[i];

 norma += ax[i] * ax[i];

 normb += bx[i] * bx[i];

 }

 /* Use sqrt(a * b) over sqrt(a) * sqrt(b) */

 return (double) similarity / sqrt((double) norma * (double) normb);

}
38

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shortcut: CPU dispatching (AVX-512)
TARGET_AVX512_POPCOUNT static uint64

BitHammingDistanceAvx512Popcount(uint32 bytes, unsigned char *ax, unsigned char *bx, uint64 distance)

{

 __m512i dist = _mm512_setzero_si512();

 for (; bytes >= sizeof(__m512i); bytes -= sizeof(__m512i))

 {

 __m512i axs = _mm512_loadu_si512((const __m512i *) ax);

 __m512i bxs = _mm512_loadu_si512((const __m512i *) bx);

 dist = _mm512_add_epi64(dist, _mm512_popcnt_epi64(_mm512_xor_si512(axs, bxs)));

 ax += sizeof(__m512i);

 bx += sizeof(__m512i);

 }

 distance += _mm512_reduce_add_epi64(dist);

 return BitHammingDistanceDefault(bytes, ax, bx, distance);

}
39

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

40

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL index interfaces

• GiST (Generalized Search Tree)

§ Supports K-NN queries

• SP-GiST (Space-partitioned Generalized Search Tree)

§ Supports K-NN queries

• GIN (Generalized Inverted Index)

• BRIN (Block Range Index)

• B-tree

• Hash

41

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: Interfacing with GiST

• consistent

• union

• penalty

• picksplit

• same

• compress

• decompress

• distance

• fetch

42

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index access methods ("custom indexes")

• Let you define indexes that don't fit existing interfaces

§ Properties

§ Methods

• "More work"

§ Responsible for vacuum, WAL, locking, planning, et al.

§ (More) responsible for impact due to upstream changes

43

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key index access method properties for pgvector

• amcanorder => false

• amcanorderbyop => true

• amcanbuildparallel => true

44

Reference: https://www.postgresql.org/docs/current/index-api.html

https://www.postgresql.org/docs/current/index-api.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key index access method functions for pgvector

• ambuild

• aminsert

• ambulkdelete

• amcostestimate

• ambeginscan

• amrescan

• amgettuple

45

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key index access method functions for pgvector

• ambuild

• aminsert

46

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key index access method functions for pgvector

• ambulkdelete

47

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key index access method functions for pgvector

• amcostestimate

48

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key index access method functions for pgvector

• ambeginscan

• amrescan

• amgettuple

49

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector index methods: IVFFlat and HNSW

• IVFFlat

§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data

§ Insert time bounded by # lists

• HNSW

§ Graph based

§ Organize vectors into
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in
graph increases

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shortcut: Store normalized vectors in index

0.0234
0.093

 -0.9123
0.1055

Valid?

✅ Same dimensions?
✅ Magnitude > 0?

Normalized?

🛠 If not, normalize

0.0253
0.1007

 -0.9880
0.1142

L2 normalization = v / || v ||

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shortcut: skip operations with normalization
VectorCosineSimilarity(int dim, float *ax, float *bx)

{

 /* ... */

 /* Auto-vectorized */

 for (int i = 0; i < dim; i++)

 {

 similarity += ax[i] * bx[i];

 norma += ax[i] * ax[i];

 normb += bx[i] * bx[i];

 }

 /* Use sqrt(a * b) over sqrt(a) * sqrt(b) */

 return (double) similarity / sqrt((double) norma * (double) normb);

}
52

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shortcut: skip operations with normalization

VECTOR_TARGET_CLONES static float

VectorInnerProduct(int dim, float *ax, float *bx)

{

 float distance = 0.0;

 /* Auto-vectorized */

 for (int i = 0; i < dim; i++)

 distance += ax[i] * bx[i];

 return distance;

}

53

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shortcut: skip operations with normalization

FUNCTION_PREFIX PG_FUNCTION_INFO_V1(vector_negative_inner_product);

Datum

vector_negative_inner_product(PG_FUNCTION_ARGS)

{

 Vector *a = PG_GETARG_VECTOR_P(0);

 Vector *b = PG_GETARG_VECTOR_P(1);

 CheckDims(a, b);

 PG_RETURN_FLOAT8((double) -VectorInnerProduct(a->dim, a->x, b->x));

}

54

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

1. IVFFlat

2. HNSW

55

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index

1. Sample the overall vectors in the table (MAX(50*lists), 10,000))

• Uses BlockSampler (ANALYZE method)

2. Calculate K-means (ivfflat.lists)

3. Assign vectors to lists in memory

4. Sort vectors in lists

5. Save index to storage

56

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: sampling

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: sampling

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: K-means

ivfflat.lists = 3

pgvector Elkan's K-means algorithms

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: list assignment

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallelism and list assignment

Vectors in
table

List

List

List

Assign to listSequential scan

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallelism and list assignment

Vectors in
table

List

List

List

Assign to listParallel scan

Assign to listParallel scan

Assign to listParallel scan

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallelism and list assignment

 -

 500

 1,000

 1,500

 2,000

 2,500

k-means assign sort save

Se
co

nd
s

5MM 1536-dim (r7gd.16xlarge – 64 vCPU, 512GiB RAM)

1 worker 8 workers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallelism and list assignment

8%

79%

0%
13%

1 worker

k-means assign sort save

24%

40%
0%

36%

8 workers

k-means assign sort save

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat: Save index to storage

65

Root List 1
Root

List 2
Root

List 3
Root List 1 List 1 List 1 List 1

List 1 List 1 List 1 List 1 List 1 List 2 List 2 List 2

List 2 List 2 List 2 List 2 List 2 List 2 List 3 List 3

List 3 List 3 List 3 List 3 List 3 List 3 List 3 32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an index an IVFFlat index (1 probe)

67

Root List 1
Root

List 2
Root

List 3
Root List 1 List 1 List 1 List 1

List 1 List 1 List 1 List 1 List 1 List 2 List 2 List 2

List 2 List 2 List 2 List 2 List 2 List 2 List 3 List 3

List 3 List 3 List 3 List 3 List 3 List 3 List 3 32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index (2 probes)

69

Root List 1
Root

List 2
Root

List 3
Root List 1 List 1 List 1 List 1

List 1 List 1 List 1 List 1 List 1 List 2 List 2 List 2

List 2 List 2 List 2 List 2 List 2 List 2 List 3 List 3

List 3 List 3 List 3 List 3 List 3 List 3 List 3 32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat considerations

• Temporal locality is directly impacted by both cluster quality and query patterns

• Latency grows linearly with probes

• Lookups outside of memory can be very expensive

• Insertions / updates can skew lookups and query quality

• Opportunities

§ Streaming I/O

§ Quantization (available, requires more evaluation)

§ Additional algorithmic improvements (e.g. SPANN)

70

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

1. IVFFlat

2. HNSW

71

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hierarchical navigable small worlds (HNSW)

• Each vector organized into "microclusters" ("neighborhoods")

• Spend minimal time in "upper layers" – most search in bottom layer ("Layer 0")

72

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW index building parameters

m

Maximum number of bidirectional links between indexed vectors

Default: 16

ef_construction

Number of vectors to maintain in “nearest neighbor” list

Default: 64

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW query parameters

hnsw.ef_search

• Number of vectors to maintain in “nearest neighbor” list

• Before v0.8, must be greater than or equal to LIMIT

• v0.8+, can use hnsw.iterative_search to satisfy unmet LIMIT

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What happens when searching a HNSW index?

• Maintain a list of visited vectors (tuple IDs / TIDs)

• Maintain an ordered list of candidates with distances

• ef_search is 1 at Layer 1+

• ef_search is ef_search (default 40) at Layer 0

81

Visited

0x0102030405060708
0x0102030405060709
0x0102030405060710

Candidates

0x0102030405060708 0.0123
0x0102030405060709 0.0434
0x0102030405060710 0.0845

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

1. Determine entry level

2. Determine insertion method ("in memory" or "on-disk")

3. Find neighbors (similar to querying)

§ Layer 0: m * 2

§ Otherwise: m

4. Add vector to graph

5. Update neighbors' bidirectional links

87

entryLevel = (int) (-log(RandomDouble()) * ml);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW entry level distribution

88

m Layer 0 Entry Level Layer 1 Entry Level
2 50% 25%
4 75% 19%
8 87% 11%

12 92% 8%
16 94% 6%
20 95% 5%
24 96% 4%
32 97% 3%
36 97% 3%
48 98% 2%
64 98% 2%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How “m” impacts index build time & search quality

 -
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

 -
 1
 2
 3
 4
 5
 6
 7
 8
 9

 8 16 24 32 40 48 56 64

Re
ca

ll

In
de

x
bu

ild
 (m

in
)

m

GIST960 1M 960-dim vectors, ef_construction=256,
hnsw.ef_search=20, max_parallel_maintenance_workers=63

Build time (min) Recall

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How "m" impacts query time via tuples scanned

90

m=16, ef_construction=64
tuples scanned

ef SIFT (N=1M) GIST (N=1M) GLoVE25 (N=1.1M) 1536d (N=5M) 768d (N=10M)
10 427 512 438 456 498
20 643 779 652 650 695
40 1044 1272 1049 1005 1050
80 1774 2212 1761 1629 1762

120 2438 3099 2420 2214 2449
200 3638 4755 3629 3328 3833
400 6247 8402 6303 5836 7190
800 10619 14706 10938 10563 13258

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How "m" impacts query time via tuples scanned

91

ef
1536d
(N=5M,m=16)

1536d
(N=5M,m=64)

768d
(N=10M,m=16)

768d
(N=10M,m=64)

10 456 605 498 1425
20 650 1257 695 2038
40 1005 2292 1050 3246
80 1629 4049 1762 5691
120 2214 5728 2449 8046
200 3328 8601 3833 12664
400 5836 15158 7190 23284
800 10563 27249 13258 42200

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW scan cost estimation

92

/*
 * HNSW cost estimation follows a formula that accounts for the total
 * number of tuples indexed combined with the parameters that most
 * influence the duration of the index scan, namely: m - the number of
 * tuples that are scanned in each step of the HNSW graph traversal
 * ef_search - which influences the total number of steps taken at layer 0
 *
 * The source of the vector data can impact how many steps it takes to
 * converge on the set of vectors to return to the executor. Currently, we
 * use a hardcoded scaling factor (HNSWScanScalingFactor) to help
 * influence that, but this could later become a configurable parameter
 * based on the cost estimations.
 *
 * The tuple estimator formula is below:
 *
 * numIndexTuples = entryLevel * m + layer0TuplesMax * layer0Selectivity
 */

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why is cost estimation important?

• Guides PostgreSQL query planner to select "best path"

• Filtering (WHERE clause)

§ A different index (B-tree) or a sequential scan may be a better choice based on
selectivity

93

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why index build speed matters (serial build)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0

50

100

150

200

250

32 64 128 256 512

Re
ca

ll

In
de

x
bu

ild
 (

m
in

)

hnsw.ef_construction

990K 1536-dim vectors, m=16, hnsw.ef_search=20

Build Time (min) Recall

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

 0.800

 0.820

 0.840

 0.860

 0.880

 0.900

 0.920

 0.940

 -

 1

 2

 3

 4

 5

 6

 7

 32 64 128 256 512

Re
ca

ll

In
de

x
bu

ild
 (m

in
)

hnsw.ef_construction

990K 1536-dim vectors, m=16, hnsw.ef_search=20,
max_maintenance_workers=63

Build Time Recall

Why index build speed matters (parallel build)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and HNSW index maintenance

• Innovation: pgvector HNSW implementation supports updates and deletes

Phase 1: HidePhase 2: Repair

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW considerations

• Embedding model impacts overall query time

• Filtering

§ Iterative scans vs. using other search methods

§ Bitmap scans(?)

• Opportunities to accelerate time spent in Layer 0

• Opportunities

§ Streaming I/O

§ Parallel vacuum

§ "Smart" graph repair to improve clustering

97

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is quantization?

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452,0.986,
-0.112, 0.751]

Scalar quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary quantization

[129, 99, 67, 244, 126, 230]

Scalar quantization (1-byte uint)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and binary quantization
CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY

 binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 40 -- set to hnsw.ef_search

) i

ORDER BY i.distance

LIMIT 10;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34

Index build time (min) 21 13 4

Recall @ ef_search = 40 0.931 0.929 0.811

QPS @ ef_search = 40 24,216 27,084 33,984

Recall @ ef_search = 80 0.965 0.961 0.900

QPS @ ef_search = 80 11,057 12,759 20,410

Recall @ ef_search = 220 0.989 0.983 0.963

QPS @ ef_search = 220 5,242 5,983 7,856

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ongoing work

105

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Areas to further explore

• "Multi-column" vector indexes

• Efficient batch queries

• Recall boosting techniques (statistical binary quantization, hybrid search)

• Demonstrably improved algorithms

• Upstream PostgreSQL changes that help vector search patterns

106

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conclusion

• What works in memory may or may not work with storage-based systems

• Extensible framework of PostgreSQL simplifies adding new search systems

§ "You have vector search…and every other PostgreSQL feature"

• Rapidly evolving space, including open areas of research (e.g., filtering)

107

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!
Jonathan Katz
jkatz@amazon.com
@jkatz05

