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Magnitude

|| [0.5, 0.5] || = √ (0.52 + 0.52) = 0.70710
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Direction
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SELECT city_name
FROM conferences
WHERE conference_name LIKE 'PGConf EU%'
ORDER BY
  conference.geocode <-> '(38.0004,23.7195)'::point
LIMIT 3;
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Foundations of vector search

• Vectors in "vector space" (search area) must all have the same number of 
dimensions

§ Each dimension should be comparable to each other

• Distance function defines proximity

§ Distance is always ≥ 0

§ Distance from a vector to itself is 0

10
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CUSTOMER 

Can you find 5 distributors of 
green olives near PGConf.EU 
2024?

Human: You are an agent who manages orders and returns on an online retail website. Given a set of APIs, Conversation History, and U
executing the set of APIs in order to fulfill user input.

Tags

Emphasis
(capitalized)

DO NOT go into a loop and return exact same apis with exact same api_input as previous observation
Convergence 

criteria

Provide only ONE action per $JSON_BLOB, as shown:

{ "api": $API_NAME, "verb": $HTTP_VERB, "api_input": { $PARAMETER: {"value": $INPUT, "source": $SOURCE} } }

Format 
(JSON)

Conversation History: Below is the history of the conversation between Human and AI and the 
History format

1

2

3

4

5

DEVELOPER CREATED AGENT

Yes, here are a list of distributors 
based on proximity…

Valid "api" values are GetOrderHistory::GetProductCatalogue, GetProductAvailability
- DO NOT return an api if all required parameter values are not present.
- DO NOT replace the placeholders in the api_name with api_inputs. 
- Return available parameters in api_inputs ONLY.

Valid "verb" is HTTP verb used in "APIs" e.g. GET, PUT etc

Valid "api_input" as json from "User Input", "Observation" or "Conversation History". 

- NEVER assume value for any parameter, mark the value as "null" if not available. 
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Retrieval-augmented 
generation (RAG)

Configure foundation model
to interact with your data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

Where can I buy green 
olives in Athens?

Product catalog

Store data

You can buy green 
olives in the following 
places in Athens…

Sorry, I don't know
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What are embeddings?
Source 

domain-
specific data

Tokenization Vectorization Store in vector 
data store

Perform 
semantic 
similarity 

search

Include 
semantically 

similar context 
in prompt

Embeddings: When vector elements are semantic, used in generative AI

Documents

Audio/video

Images

Semantic elements:
• Words, phrases
• Paragraphs, documents
• Scenes, song sections
• Faces, detected

picture elements
• And more

0.35 0.1 0 0.9 001.0 00 0001.0 0 0…

0.35 0.1 0 0.8 001.0 00 0001.0 0 0…

0.15 0.1 0 0.7 001.0 00 0001.0 0 0…

3D simplified representation. Embeddings can have thousands of 
dimensions. Source: https://daleonai.com/embeddings-explained 

https://daleonai.com/embeddings-explained
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How embeddings are used

Document 
chunks

Amazon Titan 
Embeddings

PDF 
document

User

Embeddings Amazon 
Bedrock FM

1

4

Question

Question + Context

Response

2 3

5

6

7
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Challenges with larger vectors

• Generation time

• Size

• Compression

• Query time

Blue elephant vase 
that can hold up to 
three plants in it, 
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7GB
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Approximate nearest neighbor (ANN)

• Find similar vectors without searching 
all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Recall: 80%
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ANN indexing algorithm types

Cluster Graph

Hash Tree
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Index layout in memory

18
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Index layout in a database

19
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Index layout in a database

20
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Index size exceeds available memory

21
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Index size exceeds available memory

22
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Index size exceeds available memory

23

1 2 3 4 5 6 7 8

29 30 31 32 21 22 23 24

17 18 19 20 13 14 15 16

25 26 27 28 9 10 11 12
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Where memory and storage diverge

• Continuous allocations vs. pages

• Data layout on disk

• Percentage of index in memory

• Hardware acceleration strategies (CPU vs. GPU)

24
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Vector search design principles for PostgreSQL

• Take shortcuts, where applicable

    Design for 8KiB blocks (page size)

• Leverage PostgreSQL infrastructure

    Understand your tradeoffs

25
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What is pgvector?

Adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports HNSW & IVFFlat indexing, with
options for scalar and binary quantization Distance operations include

Cosine, Euclidean/L2, Manhattan/L1,
Dot product, Hamming, Jaccard

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

https://github.com/pgvector/pgvector
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Example pgvector query

SET hnsw.ef_search TO 60;

SELECT id, text_chunk

FROM documents

ORDER BY

    embedding <=> '[0.003421, -0.23053, 0.402153, …]'::vector

LIMIT 10

27
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What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

28
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What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

29
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Data type

typedef struct Vector

{

 int32  vl_len_; /* varlena header (do not touch directly!) */

 int16  dim;  /* number of dimensions */

 int16  unused; /* reserved for future use, always zero */

 float  x[FLEXIBLE_ARRAY_MEMBER];

} Vector;

30
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PostgreSQL Infrastructure: 🍞 TOAST

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism for storing 
data larger than 8KB

§ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:

§ PLAIN: Data stored inline with table

§ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
– pgvector default before 0.6.0

§ EXTERNAL: Data stored in TOAST table when threshold exceeded
– pgvector default 0.6.0+

§ MAIN: Data stored compressed inline with table

31
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Visualizing TOAST for pgvector

32

12,"jkatz",[0.3213,0.
12321,0.12312,0.12
321,0.12321,0.1232
1,0.1123123,0.1232
1,0.12321,0.1232,0.
12312,0.12321,0.12
321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1
2312,0.12321,0.123
21,0.12321,0.11231
23,0.12321,0.12321
,0.1232,0.12312,0.1
2321,0.12321,0.123
12]

EXTENDED / EXTERNAL
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Tradeoffs: Impact of TOAST on vector data

• Traditionally, TOAST data is not on the "hot path"

• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages

33
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Space utilization on a page

34

Dimensions Vectors / Page Wasted Space (B)
128 15 308 
256 7 916 
384 5 428 
512 3 1,988 
768 2 2,000 

1,024 1 4,060 
1,536 1 2,012 
2,000 1 156 

PAGE_SIZE – PAGE_HEADER – (VECTORS * 4) – VECTORS * (4 * DIMS + 8)
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What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

35
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Distance functions / operators

36

Euclidean / L2

Cosine

Inner Product

Manhattan / Taxicab / L1

Hamming

Jaccard

<->

<=>

<#>

<+>

<~>

<%>

CREATE FUNCTION
  l2_distance(vector, vector) 
RETURNS float8
  AS 'MODULE_PATHNAME'
  LANGUAGE C
  IMMUTABLE STRICT
  PARALLEL SAFE;

CREATE FUNCTION
  cosine_distance(vector, 
vector) RETURNS float8
  AS 'MODULE_PATHNAME'
  LANGUAGE C
  IMMUTABLE STRICT
  PARALLEL SAFE;
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PostgreSQL Infrastructure: Function definitions
FUNCTION_PREFIX PG_FUNCTION_INFO_V1(l2_distance);

Datum

l2_distance(PG_FUNCTION_ARGS)

{

 Vector    *a = PG_GETARG_VECTOR_P(0);

 Vector    *b = PG_GETARG_VECTOR_P(1);

 CheckDims(a, b);

 PG_RETURN_FLOAT8(sqrt((double)

  VectorL2SquaredDistance(a->dim, a->x, b->x)));

}

37
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Shortcut: SIMD using compiler autovectorization
VectorCosineSimilarity(int dim, float *ax, float *bx)

{

 /* ... */

 /* Auto-vectorized */

 for (int i = 0; i < dim; i++)

 {

  similarity += ax[i] * bx[i];

  norma += ax[i] * ax[i];

  normb += bx[i] * bx[i];

 }

 /* Use sqrt(a * b) over sqrt(a) * sqrt(b) */

 return (double) similarity / sqrt((double) norma * (double) normb);

}
38
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Shortcut: CPU dispatching (AVX-512)
TARGET_AVX512_POPCOUNT static uint64

BitHammingDistanceAvx512Popcount(uint32 bytes, unsigned char *ax, unsigned char *bx, uint64 distance)

{

 __m512i  dist = _mm512_setzero_si512();

 for (; bytes >= sizeof(__m512i); bytes -= sizeof(__m512i))

 {

  __m512i  axs = _mm512_loadu_si512((const __m512i *) ax);

  __m512i  bxs = _mm512_loadu_si512((const __m512i *) bx);

  dist = _mm512_add_epi64(dist, _mm512_popcnt_epi64(_mm512_xor_si512(axs, bxs)));

  ax += sizeof(__m512i);

  bx += sizeof(__m512i);

 }

 distance += _mm512_reduce_add_epi64(dist);

 return BitHammingDistanceDefault(bytes, ax, bx, distance);

}
39
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What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

40
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PostgreSQL index interfaces

• GiST (Generalized Search Tree)

§ Supports K-NN queries

• SP-GiST (Space-partitioned Generalized Search Tree)

§ Supports K-NN queries

• GIN (Generalized Inverted Index)

• BRIN (Block Range Index)

• B-tree

• Hash

41
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Example: Interfacing with GiST 

• consistent

• union

• penalty

• picksplit

• same

• compress

• decompress

• distance

• fetch

42
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Index access methods ("custom indexes")

• Let you define indexes that don't fit existing interfaces

§ Properties

§ Methods

• "More work"

§ Responsible for vacuum, WAL, locking, planning, et al.

§ (More) responsible for impact due to upstream changes

43
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Key index access method properties for pgvector

• amcanorder => false

• amcanorderbyop => true

• amcanbuildparallel => true

44

Reference: https://www.postgresql.org/docs/current/index-api.html

https://www.postgresql.org/docs/current/index-api.html
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Key index access method functions for pgvector

• ambuild

• aminsert

• ambulkdelete

• amcostestimate

• ambeginscan

• amrescan

• amgettuple

45

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html
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Key index access method functions for pgvector

• ambuild

• aminsert

46

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html
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Key index access method functions for pgvector

• ambulkdelete

47

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html
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Key index access method functions for pgvector

• amcostestimate

48

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html
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Key index access method functions for pgvector

• ambeginscan

• amrescan

• amgettuple

49

Reference: https://www.postgresql.org/docs/current/index-functions.html

https://www.postgresql.org/docs/current/index-functions.html


© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector index methods: IVFFlat and HNSW

• IVFFlat

§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data

§ Insert time bounded by # lists

• HNSW

§ Graph based

§ Organize vectors into 
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in 
graph increases 
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Shortcut: Store normalized vectors in index

0.0234
0.093

 -0.9123
0.1055

Valid?

✅ Same dimensions?
✅ Magnitude > 0?

Normalized?

🛠 If not, normalize

0.0253
0.1007

 -0.9880
0.1142

L2 normalization = v  / || v ||
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Shortcut: skip operations with normalization
VectorCosineSimilarity(int dim, float *ax, float *bx)

{

 /* ... */

 /* Auto-vectorized */

 for (int i = 0; i < dim; i++)

 {

  similarity += ax[i] * bx[i];

  norma += ax[i] * ax[i];

  normb += bx[i] * bx[i];

 }

 /* Use sqrt(a * b) over sqrt(a) * sqrt(b) */

 return (double) similarity / sqrt((double) norma * (double) normb);

}
52
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Shortcut: skip operations with normalization

VECTOR_TARGET_CLONES static float

VectorInnerProduct(int dim, float *ax, float *bx)

{

 float  distance = 0.0;

 /* Auto-vectorized */

 for (int i = 0; i < dim; i++)

  distance += ax[i] * bx[i];

 return distance;

}

53
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Shortcut: skip operations with normalization

FUNCTION_PREFIX PG_FUNCTION_INFO_V1(vector_negative_inner_product);

Datum

vector_negative_inner_product(PG_FUNCTION_ARGS)

{

 Vector    *a = PG_GETARG_VECTOR_P(0);

 Vector    *b = PG_GETARG_VECTOR_P(1);

 CheckDims(a, b);

 PG_RETURN_FLOAT8((double) -VectorInnerProduct(a->dim, a->x, b->x));

}

54
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What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

1. IVFFlat

2. HNSW

55
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Building an IVFFlat index

1. Sample the overall vectors in the table (MAX(50*lists), 10,000))

• Uses BlockSampler (ANALYZE method)

2. Calculate K-means (ivfflat.lists)

3. Assign vectors to lists in memory

4. Sort vectors in lists

5. Save index to storage

56
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IVFFlat: sampling
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IVFFlat: sampling
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IVFFlat: K-means

ivfflat.lists = 3

pgvector Elkan's K-means algorithms 
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IVFFlat: list assignment
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Parallelism and list assignment

Vectors in 
table

List

List

List

Assign to listSequential scan
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Parallelism and list assignment

Vectors in 
table

List

List

List

Assign to listParallel scan

Assign to listParallel scan

Assign to listParallel scan



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallelism and list assignment

 -

 500

 1,000

 1,500

 2,000

 2,500

k-means assign sort save

Se
co

nd
s

5MM 1536-dim (r7gd.16xlarge – 64 vCPU, 512GiB RAM)

1 worker 8 workers
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Parallelism and list assignment

8%

79%

0%
13%

1 worker

k-means assign sort save

24%

40%
0%

36%

8 workers

k-means assign sort save
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IVFFlat: Save index to storage

65

Root List 1 
Root

List 2 
Root

List 3 
Root List 1 List 1 List 1 List 1

List 1 List 1 List 1 List 1 List 1 List 2 List 2 List 2

List 2 List 2 List 2 List 2 List 2 List 2 List 3 List 3

List 3 List 3 List 3 List 3 List 3 List 3 List 3 32
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Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Querying an index an IVFFlat index (1 probe)

67

Root List 1 
Root

List 2 
Root

List 3 
Root List 1 List 1 List 1 List 1

List 1 List 1 List 1 List 1 List 1 List 2 List 2 List 2

List 2 List 2 List 2 List 2 List 2 List 2 List 3 List 3

List 3 List 3 List 3 List 3 List 3 List 3 List 3 32
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Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Querying an IVFFlat index (2 probes)

69

Root List 1 
Root

List 2 
Root

List 3 
Root List 1 List 1 List 1 List 1

List 1 List 1 List 1 List 1 List 1 List 2 List 2 List 2

List 2 List 2 List 2 List 2 List 2 List 2 List 3 List 3

List 3 List 3 List 3 List 3 List 3 List 3 List 3 32
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IVFFlat considerations

• Temporal locality is directly impacted by both cluster quality and query patterns

• Latency grows linearly with probes

• Lookups outside of memory can be very expensive

• Insertions / updates can skew lookups and query quality

• Opportunities

§ Streaming I/O

§ Quantization (available, requires more evaluation)

§ Additional algorithmic improvements (e.g. SPANN)

70
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What do we need to define?

1. Data type

2. Distance functions and operators

3. Indexing strategy

1. IVFFlat

2. HNSW

71
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Hierarchical navigable small worlds (HNSW)

• Each vector organized into "microclusters" ("neighborhoods")

• Spend minimal time in "upper layers" – most search in bottom layer ("Layer 0")

72
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HNSW index building parameters

m

Maximum number of bidirectional links between indexed vectors

Default: 16

ef_construction

Number of vectors to maintain in “nearest neighbor” list

Default: 64



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW query parameters

hnsw.ef_search

• Number of vectors to maintain in “nearest neighbor” list

• Before v0.8, must be greater than or equal to LIMIT

• v0.8+, can use hnsw.iterative_search to satisfy unmet LIMIT
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Querying an HNSW index

Layer 2



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0
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Querying an HNSW index

Layer 0
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What happens when searching a HNSW index?

• Maintain a list of visited vectors (tuple IDs / TIDs)

• Maintain an ordered list of candidates with distances

• ef_search is 1 at Layer 1+

• ef_search is ef_search (default 40) at Layer 0

81

Visited

0x0102030405060708
0x0102030405060709
0x0102030405060710

Candidates

0x0102030405060708     0.0123
0x0102030405060709     0.0434
0x0102030405060710     0.0845
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Building an HNSW index
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 1



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 0
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Building an HNSW index

1. Determine entry level

2. Determine insertion method ("in memory" or "on-disk")

3. Find neighbors (similar to querying)

§ Layer 0: m * 2

§ Otherwise: m

4. Add vector to graph

5. Update neighbors' bidirectional links

87

entryLevel = (int) (-log(RandomDouble()) * ml);
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HNSW entry level distribution

88

m Layer 0 Entry Level Layer 1 Entry Level
2 50% 25%
4 75% 19%
8 87% 11%

12 92% 8%
16 94% 6%
20 95% 5%
24 96% 4%
32 97% 3%
36 97% 3%
48 98% 2%
64 98% 2%
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How “m” impacts index build time & search quality

 -
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

 -
 1
 2
 3
 4
 5
 6
 7
 8
 9

 8  16  24  32  40  48  56  64

Re
ca

ll

In
de

x 
bu

ild
 (m

in
)

m

GIST960 1M 960-dim vectors, ef_construction=256, 
hnsw.ef_search=20, max_parallel_maintenance_workers=63

Build time (min) Recall
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How "m" impacts query time via tuples scanned

90

m=16, ef_construction=64
# tuples scanned

ef SIFT (N=1M) GIST (N=1M) GLoVE25 (N=1.1M) 1536d (N=5M) 768d (N=10M)
10 427 512 438 456 498
20 643 779 652 650 695
40 1044 1272 1049 1005 1050
80 1774 2212 1761 1629 1762

120 2438 3099 2420 2214 2449
200 3638 4755 3629 3328 3833
400 6247 8402 6303 5836 7190
800 10619 14706 10938 10563 13258
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How "m" impacts query time via tuples scanned
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ef
1536d 
(N=5M,m=16)

1536d 
(N=5M,m=64)

768d
(N=10M,m=16)

768d
(N=10M,m=64)

10 456 605 498 1425
20 650 1257 695 2038
40 1005 2292 1050 3246
80 1629 4049 1762 5691
120 2214 5728 2449 8046
200 3328 8601 3833 12664
400 5836 15158 7190 23284
800 10563 27249 13258 42200
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HNSW scan cost estimation

92

/*
  * HNSW cost estimation follows a formula that accounts for the total
  * number of tuples indexed combined with the parameters that most
  * influence the duration of the index scan, namely: m - the number of
  * tuples that are scanned in each step of the HNSW graph traversal
  * ef_search - which influences the total number of steps taken at layer 0
  *
  * The source of the vector data can impact how many steps it takes to
  * converge on the set of vectors to return to the executor. Currently, we
  * use a hardcoded scaling factor (HNSWScanScalingFactor) to help
  * influence that, but this could later become a configurable parameter
  * based on the cost estimations.
  *
  * The tuple estimator formula is below:
  *
  * numIndexTuples = entryLevel * m + layer0TuplesMax * layer0Selectivity
  */
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Why is cost estimation important?

• Guides PostgreSQL query planner to select "best path"

• Filtering (WHERE clause)

§ A different index (B-tree) or a sequential scan may be a better choice based on 
selectivity
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Why index build speed matters (serial build)
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pgvector and HNSW index maintenance

• Innovation: pgvector HNSW implementation supports updates and deletes

Phase 1: HidePhase 2: Repair
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HNSW considerations

• Embedding model impacts overall query time

• Filtering

§ Iterative scans vs. using other search methods

§ Bitmap scans(?)

• Opportunities to accelerate time spent in Layer 0

• Opportunities

§ Streaming I/O 

§ Parallel vacuum

§ "Smart" graph repair to improve clustering
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What is quantization?

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452,0.986,
-0.112, 0.751]

Scalar quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary quantization

[129, 99, 67, 244, 126, 230]

Scalar quantization (1-byte uint)
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pgvector and scalar quantization (2 byte)

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;
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pgvector and binary quantization
CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY

   binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 40 -- set to hnsw.ef_search

) i

ORDER BY i.distance

LIMIT 10;



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1536d 5MM (r7i.16xlarge, m=16, ef_construction=256)

Flat 2-byte float Binary (rerank)

Index Size (GB) 38.15 19.07 2.34 

Index build time (min) 21 13 4 

Recall @ ef_search = 40 0.931 0.929 0.811 

QPS @ ef_search = 40 24,216 27,084 33,984 

Recall @ ef_search = 80 0.965 0.961 0.900 

QPS @ ef_search = 80 11,057 12,759 20,410 

Recall @ ef_search = 220 0.989 0.983 0.963 

QPS @ ef_search = 220 5,242 5,983 7,856 
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Ongoing work
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Areas to further explore

• "Multi-column" vector indexes

• Efficient batch queries

• Recall boosting techniques (statistical binary quantization, hybrid search)

• Demonstrably improved algorithms

• Upstream PostgreSQL changes that help vector search patterns
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Conclusion

• What works in memory may or may not work with storage-based systems

• Extensible framework of PostgreSQL simplifies adding new search systems

§ "You have vector search…and every other PostgreSQL feature"

• Rapidly evolving space, including open areas of research (e.g., filtering)
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Thank you!
Jonathan Katz
jkatz@amazon.com
@jkatz05


