NEON

The wire protocol

Heikki Linnakangas

NEON

History

- Current protocol is called “protocol version 3”
- Protocol version 3 was introduced in server version 7.4
- Version 2 support was dropped in server version 14

NEON
Message structure

- All communication is through a stream of messages.
- The first byte of a message identifies the message type, and the next four

bytes specify the length of the rest of the message (this length count includes
itself, but not the message-type byte).

- The remaining contents of the message are determined by the message type.

Q 12 SELECT 1

Message type Message length Message content
(1 byte) (4 bytes) (depends on the
message type)

NEON

Opening a connection

NEON

Handshake

Client sends the first message after opening the TCP connection
Can be one of:

- The “startup packet”

- SSLRequest

- GSS encryption request

- Query cancel packet

- TLS hello (since version 17)

NEON

The TLS handshake

- Client sends magic 4 bytes forming an SSLRequest

- Server responds with Y’ or ‘N’

- IfY’, the client then proceeds with TLS handshake

- If 'N’, the client can continue without encryption, or hang up

- Starting with v17, the client can also start the TLS handshake immediately,
without the SSLRequest. If the server does not support TLS, it will close the
connection.

NEON

The startup packet

- After establishing TLS (if wanted), the client sends so-called startup packet

- The startup packet contains:
- Protocol version
- List of supported protocol extensions
- Database name
- User name
- Optional settings that will be set to GUCs after startup
- Typically, application_name

Authentication

The authentication consists of a number of challenge-response messages

The server sends one of the Authentication request messages, and the client responds:

AuthenticationCleartextPassword
AuthenticationMD5Password

AuthenticationSASL, AuthenticationSASLContinue,
AuthenticationSASLFinal (for SCRAM)
AuthenticationKerberosV5

AuthenticationGSS, AuthenticationGSSContinue
AuthenticationSSPI

Once authentication is accepted, the server sends an AuthenticationOKmessage

NEON

NEON
Simplest possible handshake

Client Server
-> Startup packet

<- AuthenticationOK

NEON

Protocol negotiation

- If the server does not support the minor protocol version requested by the
client, it sends a NegotiateProtocol message with the highest version
that it does support.

- The client can choose to continue with that version, or hang up

- The same applies to any protocol extensions that the server does not support

More complicated case

Client
-> GSSRequst

-> SSLRequest

-> TLS ClientHello

-> TLS ChangeCipherSet
-> Startup packet

-> SASLInitialResponse
-> SASLResponse

Server

<-‘N’

<Y’

<- TLS ServerHello

<- TLS ChangeCipherSet

<- NegotiateProtocol
<- AuthenticationSASL

<- AuthenticationSASLContinue

<- AuthenticationSASLComplete
<- AuthenticationOK

NEON

NEON
Almost there..

After authentication, the server will send:

- BackendKeyData: this contains the “query cancellation key” that will be needed to perform query
cancellation later. The client saves it somewhere

- ParameterStatus: Report current values of certain GUCs

- ReadyForQuery

Connection has now been established

- The server enters the normal query handling loop
- The client can now start sending queries

NEON

Running queries

NEON

Running queries

Two ways:

A) Simple query protocol
- Supports “multi-statements”, i.e “SELECT ‘foo’; SELECT ‘bar™

B) Extended query protocol
- Query parameters, prepared statements, cursors

NEON
Simple query protocol

Client Server
-> Q SELECT * FROM table

<- RowDescription

<- DataRow

<- DataRow

<- CommandCompletion: SELECT 2
<- ReadyForQuery

NEON

Extended query protocol

Client Server
-> Parse SELECT * FROM tbl WHERE id = $1
-> Bind 1234

-> Describe

-> Execute

<- RowDescription

<- DataRow

<- DataRow

<- CommandCompletion: SELECT 2
<- ReadyForQuery

NEON
Parse

- The Parse message comes in two variants:

- unnamed variant
- named variant

- The unnamed variant is used for executing one-off queries

- The named variant creates a prepared statement that can be reused
- These can also be created with at SQL level with the PREPARE statement

NEON

Bind

- The Bind message includes:
- the prepared statement name (or empty string for the unnamed prepared statement)
- Destination portal name (or empty string for the unnamed portal)
- values for any query parameters
- Whether to use binary or text format for each result column

- Creates a named portal, aka. Cursor

- This shares the namespace with cursors declared at SQL level with DECLARE CURSOR and
with cursors created e.g. in pl/pgsql functions
- unnamed portal should used for one-off executions

NEON
Describe

Comes in two variants:

Portal Describe
Statement Describe

- The server will respond with a RowDescription message, with information
about the columns and datatypes in the result set

- In statement variant, the server also sends a ParameterDescription message,
with information about the query parameters

NEON
Execute

- Runs the portal, returns rows

- Can include a max. row count
- You can fetch more by sending another Execute message

Synchronization

Client

-> Parse
-> Bind

-> Execute
-> Sync

Server

<- DataRows
<- CommandCompletion: SELECT 2
<- ReadyForQuery

NEON

NEON
Synchronization

- After each logical statement, the client sends a Sync message

- The server will buffer responses and doesn’t send anything back until it sees
a Sync or the buffer fills up

- The server can send an ErrorMessage at any time, and the connection enters
“error mode” where any subsequent queries to fail too

- Sync closes the implicit transaction

NEON

Running multiple queries in one “logical statement”

Client Server

-> Parse SELECT ‘foo’ +Bind+Execute

-> Parse SELECT ‘bar’ +Bind+Execute

-> Sync
<- DataRows
<- CommandCompletion: SELECT 1
<- DataRows
<- CommandCompletion: SELECT 1
<- ReadyForQuery

NEON

Running multiple queries in one “logical statement”

Client Server
-> Parse SELECT ‘foo’ +Bind+Execute
-> Flush
<- DataRows
<- CommandCompletion: SELECT 1
-> Parse SELECT ‘bar’ +Bind+Execute
-> Sync
<- DataRows
<- CommandCompletion: SELECT 1
<- ReadyForQuery

COPY protocol

NEON

COPY in and COPY out modes

COPY mode is started by sending a COPY command:
COPY in, client -> server:

COPY tbl FROM STDIN
COPY out, server -> client:

COPY tbl TO STDOUT

NEON

COPY in, client -> server

Client Server

-> Q COPY mytbl FROM STDIN
<- CopylnResponse

-> CopyData

-> CopyData

-> CopyDone
<- CommandCompletion: COPY 123
<- ReadyForQuery

NEON

COPY mode

- The server responds with CopylnResponse or CopyOutResponse

- At the end, the sender sends a CopyDone or CopyFail message to exit the
copy mode

- The server can send an ErrorMessage at any time. The COPY mode still
needs to be terminated with a CopyFail message

- After CopyDone, the server responds with CommandCompletion message,
like with a normal query

NEON
CopyData messages

- CopyData messages are just a stream of data

- The content depends on the COPY format options
Text. CSV, BINARY, DELIMITER, ESCAPE and so forth

- In COPY out mode (server -> client), each CopyData message contains one
row

- In COPY in mode (client -> server), the client is free to chunk the data as it
wishes

Replication protocol

N

EON

NEON

Replication protocol

- If you use the replication option in the startup packet, you open a
replication connection instead of a regular one
- The wire protocol is the same
- Instead of SQL queries, there is a set of “replication commands” that you can
run:
- IDENTIFY_SYSTEM
- TIMELINE_HISTORY

- CREATE_REPLICATION_SLOT
- START_REPLICATION

NEON
Physical Replication protocol

- The START_REPLICATION command enters COPY both mode

- Like COPY in/out modes, but both sides can send CopyData messages

- A nested protocol inside the wire protocol, each message is send as a
CopyData message, with a nested message type header and payload

Messages include:

- XLogData
- Keepalive messages
- Hot standby feedback messages

NEON
Logical Replication protocol

- Started with the START _REPLICATION command
- Also a nested protocol using COPY mode
Messages include e.g.:

- Begin
- Insert/Update/Delete
- Commit

NEON

Cancellation

NEON

Query cancellation

If you hit CTRL-C in psql, for example, the client initiates “query cancellation”

Query cancellation is performed by opening another TCP connection
Instead of sending a startup packet, the client sends a CancelRequest
message, with the secret token that it got from the server when the
connection was established

Can be TLS encrypted

NEON

So you want to build a
connection pooler?

NEON
Connection state

- Prepared statements
- Cursors

- Current transaction

- SET variables

- Caches

- Cancellation

Protocol extendability

N

EON

NEON
Two mechanisms

Minor version negotiation

- Current version is 3.0. If we introduce version 3.1, client and server can fall
back to the lowest common supported version

Protocol extensions

- The startup packet can contain list of supported extensions, and can fall back
to set of extensions supported by client and server

NEON
Protocol negotiation is currently untested

- There is only one minor version, 3.0
- There are no protocol extensions

If you’re writing a pooler or server that uses the Postgres wire protocol,
please implement the protocol negotiation to be future proof!

. NEON

Two patches in progress that will extend the protocol

- Add new protocol message to change GUCSs to be able to

change protocol extension parameters by Jelte
Fennema-Nio

Make query cancel keys longer by Heikki Linnakangas

https://commitfest.postgresql.org/50/4736/
https://commitfest.postgresql.org/50/4736/
https://commitfest.postgresql.org/49/4870/

NEON

Thank you!

Questions?

Tip: Wireshark has built-in support for parsing the Postgres protocol

