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History

- Current protocol is called “protocol version 3”
- Protocol version 3 was introduced in server version 7.4
- Version 2 support was dropped in server version 14
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Message structure

- All communication is through a stream of messages.
- The first byte of a message identifies the message type, and the next four

bytes specify the length of the rest of the message (this length count includes
itself, but not the message-type byte).

- The remaining contents of the message are determined by the message type.

Q 12 SELECT 1

Message type Message length Message content
(1 byte) (4 bytes) (depends on the
message type)
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Opening a connection
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Handshake

Client sends the first message after opening the TCP connection
Can be one of:

- The “startup packet”

- SSLRequest

- GSS encryption request

- Query cancel packet

- TLS hello (since version 17)
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The TLS handshake

- Client sends magic 4 bytes forming an SSLRequest

- Server responds with Y’ or ‘N’

- IfY’, the client then proceeds with TLS handshake

- If 'N’, the client can continue without encryption, or hang up

- Starting with v17, the client can also start the TLS handshake immediately,
without the SSLRequest. If the server does not support TLS, it will close the
connection.
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The startup packet

- After establishing TLS (if wanted), the client sends so-called startup packet

- The startup packet contains:
- Protocol version
- List of supported protocol extensions
- Database name
- User name
- Optional settings that will be set to GUCs after startup
- Typically, application_name



Authentication

The authentication consists of a number of challenge-response messages

The server sends one of the Authentication request messages, and the client responds:

AuthenticationCleartextPassword
AuthenticationMD5Password

AuthenticationSASL, AuthenticationSASLContinue,
AuthenticationSASLFinal (for SCRAM)
AuthenticationKerberosV5

AuthenticationGSS, AuthenticationGSSContinue
AuthenticationSSPI

Once authentication is accepted, the server sends an AuthenticationOKmessage

NEON
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Simplest possible handshake

Client Server
-> Startup packet

<- AuthenticationOK
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Protocol negotiation

- If the server does not support the minor protocol version requested by the
client, it sends a NegotiateProtocol message with the highest version
that it does support.

- The client can choose to continue with that version, or hang up

- The same applies to any protocol extensions that the server does not support



More complicated case

Client
-> GSSRequst

-> SSLRequest

-> TLS ClientHello

-> TLS ChangeCipherSet
-> Startup packet

-> SASLInitialResponse
-> SASLResponse

Server

<-‘N’

<Y’

<- TLS ServerHello

<- TLS ChangeCipherSet

<- NegotiateProtocol
<- AuthenticationSASL

<- AuthenticationSASLContinue

<- AuthenticationSASLComplete
<- AuthenticationOK

NEON



NEON
Almost there..

After authentication, the server will send:

- BackendKeyData: this contains the “query cancellation key” that will be needed to perform query
cancellation later. The client saves it somewhere

- ParameterStatus: Report current values of certain GUCs

- ReadyForQuery

Connection has now been established

- The server enters the normal query handling loop
- The client can now start sending queries
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Running queries
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Running queries

Two ways:

A) Simple query protocol
- Supports “multi-statements”, i.e “SELECT ‘foo’; SELECT ‘bar™

B) Extended query protocol
- Query parameters, prepared statements, cursors
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Simple query protocol

Client Server
-> Q SELECT * FROM table

<- RowDescription

<- DataRow

<- DataRow

<- CommandCompletion: SELECT 2
<- ReadyForQuery
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Extended query protocol

Client Server
-> Parse SELECT * FROM tbl WHERE id = $1
-> Bind 1234

-> Describe

-> Execute

<- RowDescription

<- DataRow

<- DataRow

<- CommandCompletion: SELECT 2
<- ReadyForQuery
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Parse

- The Parse message comes in two variants:

- unnamed variant
- named variant

- The unnamed variant is used for executing one-off queries

- The named variant creates a prepared statement that can be reused
- These can also be created with at SQL level with the PREPARE statement



NEON

Bind

- The Bind message includes:
- the prepared statement name (or empty string for the unnamed prepared statement)
- Destination portal name (or empty string for the unnamed portal)
- values for any query parameters
- Whether to use binary or text format for each result column

- Creates a named portal, aka. Cursor

- This shares the namespace with cursors declared at SQL level with DECLARE CURSOR and
with cursors created e.g. in pl/pgsql functions
- unnamed portal should used for one-off executions
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Describe

Comes in two variants:

Portal Describe
Statement Describe

- The server will respond with a RowDescription message, with information
about the columns and datatypes in the result set

- In statement variant, the server also sends a ParameterDescription message,
with information about the query parameters
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Execute

- Runs the portal, returns rows

- Can include a max. row count
- You can fetch more by sending another Execute message



Synchronization

Client

-> Parse
-> Bind

-> Execute
-> Sync

Server

<- DataRows
<- CommandCompletion: SELECT 2
<- ReadyForQuery
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Synchronization

- After each logical statement, the client sends a Sync message

- The server will buffer responses and doesn’t send anything back until it sees
a Sync or the buffer fills up

- The server can send an ErrorMessage at any time, and the connection enters
“error mode” where any subsequent queries to fail too

- Sync closes the implicit transaction
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Running multiple queries in one “logical statement”

Client Server

-> Parse SELECT ‘foo’ +Bind+Execute

-> Parse SELECT ‘bar’ +Bind+Execute

-> Sync
<- DataRows
<- CommandCompletion: SELECT 1
<- DataRows
<- CommandCompletion: SELECT 1
<- ReadyForQuery
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Running multiple queries in one “logical statement”

Client Server
-> Parse SELECT ‘foo’ +Bind+Execute
-> Flush
<- DataRows
<- CommandCompletion: SELECT 1
-> Parse SELECT ‘bar’ +Bind+Execute
-> Sync
<- DataRows
<- CommandCompletion: SELECT 1
<- ReadyForQuery



COPY protocol
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COPY in and COPY out modes

COPY mode is started by sending a COPY command:
COPY in, client -> server:

COPY tbl FROM STDIN
COPY out, server -> client:

COPY tbl TO STDOUT
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COPY in, client -> server

Client Server

-> Q COPY mytbl FROM STDIN
<- CopylnResponse

-> CopyData

-> CopyData

-> CopyDone
<- CommandCompletion: COPY 123
<- ReadyForQuery
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COPY mode

- The server responds with CopylnResponse or CopyOutResponse

- At the end, the sender sends a CopyDone or CopyFail message to exit the
copy mode

- The server can send an ErrorMessage at any time. The COPY mode still
needs to be terminated with a CopyFail message

- After CopyDone, the server responds with CommandCompletion message,
like with a normal query
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CopyData messages

- CopyData messages are just a stream of data

- The content depends on the COPY format options
Text. CSV, BINARY, DELIMITER, ESCAPE and so forth

- In COPY out mode (server -> client), each CopyData message contains one
row

- In COPY in mode (client -> server), the client is free to chunk the data as it
wishes



Replication protocol

N
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Replication protocol

- If you use the replication option in the startup packet, you open a
replication connection instead of a regular one
- The wire protocol is the same
- Instead of SQL queries, there is a set of “replication commands” that you can
run:
- IDENTIFY_SYSTEM
- TIMELINE_HISTORY

- CREATE_REPLICATION_SLOT
- START_REPLICATION
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Physical Replication protocol

- The START_REPLICATION command enters COPY both mode

- Like COPY in/out modes, but both sides can send CopyData messages

- A nested protocol inside the wire protocol, each message is send as a
CopyData message, with a nested message type header and payload

Messages include:

- XLogData
- Keepalive messages
- Hot standby feedback messages



NEON
Logical Replication protocol

- Started with the START _REPLICATION command
- Also a nested protocol using COPY mode
Messages include e.g.:

- Begin
- Insert/Update/Delete
- Commit
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Cancellation
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Query cancellation

If you hit CTRL-C in psql, for example, the client initiates “query cancellation”

Query cancellation is performed by opening another TCP connection
Instead of sending a startup packet, the client sends a CancelRequest
message, with the secret token that it got from the server when the
connection was established

Can be TLS encrypted
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So you want to build a
connection pooler?
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Connection state

- Prepared statements
- Cursors

- Current transaction

-  SET variables

- Caches

- Cancellation



Protocol extendability

N

EON



NEON
Two mechanisms

Minor version negotiation

- Current version is 3.0. If we introduce version 3.1, client and server can fall
back to the lowest common supported version

Protocol extensions

- The startup packet can contain list of supported extensions, and can fall back
to set of extensions supported by client and server
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Protocol negotiation is currently untested

- There is only one minor version, 3.0
- There are no protocol extensions

If you’re writing a pooler or server that uses the Postgres wire protocol,
please implement the protocol negotiation to be future proof!
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Two patches in progress that will extend the protocol

- Add new protocol message to change GUCSs to be able to

change protocol extension parameters by Jelte
Fennema-Nio

Make query cancel keys longer by Heikki Linnakangas



https://commitfest.postgresql.org/50/4736/
https://commitfest.postgresql.org/50/4736/
https://commitfest.postgresql.org/49/4870/

NEON

Thank you!

Questions?

Tip: Wireshark has built-in support for parsing the Postgres protocol



