' " Microsoft

Supporting a New PostgreSQL
Version in Your Extension
- A Citus Case Study

Naisila Puka

Software Engineer @ Microsoft

Outline of this talk

* Title keywords intro:
* Supporting a New PostgreSQL Version in Your Extension
- A Citus Case Study

* PG release timeline adventures

* Steps on supporting a new PG version
* Successful compilation
* Extension logic sanity
* PGXX New features integration

PostgreSQL major releases

* A major version every year
* New features, improvements, and bug fixes
* Following a well-defined release schedule

Postgres: Designed to be easily extensible

PG extensions:

* Add custom functionality

* Enhance database capabilities
* Optimize performance

* Overall idea: make the database more adaptable to
specific requirements or use cases.

Extensions using PostgreSQL hooks

* Customize PG at various execution points

* Predefined entry points in the server's code where

additional functionality can be inserted without modifying
the core source code

* E.g. hooks at query planning, execution, transaction
management

Citus: Extension leveraging PG hooks

Distributed PostgreSQL as an Extension . .
* Adds the ability to distribute and

Schema changes _ _ _ _ replicate PostgreSQL tables across a
Queries (reads & writes) Queries (reads & writes) Queries (reads & writes) shared-nothing Postg reSQL cluster
l’ , l’ . ‘I’ . * Open-source repo on GitHub:

https://github.com/citusdata/citus

items e Citus on Azure - Cosmos DB for
distributed tables E E E PostgreSQL
& metadata @ . .
* Citus Utility hook and Columnar

shards Utility hook before Postgres’s
coordinator o worker 1 \ worker 2 | standard utility process
7~ intemnalconnections __—7"
* Intercepts PostgreSQL’s planner,

parser and executor

https://github.com/citusdata/citus

Questions for your extension:
Is it compatible with the new PG release?

* Does the extension compile successfully?
* How'’s the test suite doing?

* Do new PG features just work when your extension is installed?

* Do you still want to support earlier PG versions?

* Is your extension still relevant?

* Do you need a strategy here or will a Pull Request fix
everything?

Answers for Citus Pre-PG16 support

* Does the extension compile successfully? No
 How’s the test suite doing? Some tests fail/crash

* Do new PG features just work when your extension is installed?
Most do, some don’t

* Do you still want to support earlier PG versions? Yes, 3

* |s your extension still relevant? Yeah, but need to distribute new
SQL commands as well to stay coherent

* Do you need a strategy here or will a Pull Request fix
everything? A STRATEGY FOR SURE

Strategy

General: Follow the PG release schedule
1. Successful compilation

2. Extension sanity
* Make sure everything works as before — use your test suite!

3. PG new features integration

* Enhance your extension with PG’s newly added features/SQL
changes

Follow the PG release schedule

* Postgres is open-source

* You can follow the commits going into the new release
REL XX _STABLE branch

e Bui
wit
* Ma

d and run tests regularly to identify potential issues
h new PG commits early-on

ke use of Beta releases and release candidates

Example — PG15 Timeline (2022)

15 Beta 1 - May 19t : SQL/JSON feature

15 Beta 2 — June 30" : improvements to SQL/JSON feature

15 Beta 3 — August 11t

15 Beta 4 — September 8™ : SQL/JSON feature is reverted, Citus builds are broken
15 RC 1 - September 29" : message wording change, Citus tests are broken

15 RC 2 — October 6"

15.0 — October 13™ : Introduces new function, builds are ok, tests are broken

e SQL/JSON features proposed in betal removed as of beta4
=> We also reverted our commits for these features.

* Function name conflict ReplicationSlotName after RC2
=> renamed to ReplicationSlotNameForNodeAndOwner.

Example — PG16 Timeline (2023)

16 Beta 1 — May 25t
16 Beta 2 — June 29t
Merge compilation changes

16 Beta 3 — August 10t
Merge regression tests sanity changes

16 RC 1 — August 21°t
16.0 — September 14"

PG16 compatibility: Resolve compilation issues (#7005)

ﬁ naisila and onderkalaci authored on Jul 21, 2023 @‘erified}

This PR provides successful compilation against PGl6Beta2. It does some
necessary refactoring to prepare for full support of version 18, in
#6952 .

Adds PG16Beta3 support (#6952)

naisila authored on Aug 17, 2023 {Verified}

DESCRIPTION: Adds PGlG6Beta3 support

This is the final commit that adds
PGle compatibility with Citus's current features.

1 - Successful compilation

Update CONFIGURE script to include PGXX

Some variables no longer exist / have been replaced, PG15 e.q:

Value node struct has been removed, replaced by separate Integer, Float,
String, and BitString node types

Functions/Objects/Variables/Properties added/changed, PG15 e.qg:
#if PG_VERSION_NUM >= PG_VERSION_15
#define RelationCreateStorage_compat(RelFileNode rnode, char relpersistence, bool register_delete)
RelationCreateStorage(rnode, relpersistence, register_delete)
#else
#define RelationCreateStorage_compat(RelFileNode rnode, char relpersistence, bool register_delete)
RelationCreateStorage(rnode, relpersistence)

2 - Extension sanity

* Successful compilation is NOT enough.

* Should update INTERNAL LOGIC accordingly to make sure
current features function properly.

Citus Planner Hook Example with PG16

/**************X**
*
* Query optimizer entry point
£
* To support loadable plugins that monitor or modify planner behavior,
we provide a hook variable that lets a plugin get control before and
after the standard planning process. The plugin would normally call
standard planner().

*

*

#
#
* Note to plugin authors: standard planner() scribbles on its Query input,

* so you'd better copy that data structure if you want to plan more than once.
#

***!
PlannedStmt *
planner(Query *parse, const char *query string, int cursorOptions,
ParamListInfo boundParams)

{

Plannedstmt *result;

it (planner hook)

result = (*planner_hook) (parse, query string, cursorOptions, boundParams);
else

result = standard_planner(parse, query string, cursorOptions, boundParams);
return result;

—

Citus Technical Documentation

= O citusdata / citus Q + - o n @.

<> Code (2 Issues 973 17 Pull requests 92 Q) Discussions () Actions [Wiki @ Security 23 [~ Insights

[l ¥ main ~ citus / src / backend / distributed / README.md (& Q, Gotofile t]| | nee
’4_‘-‘ 3 people Update Citus Technical Documentation about the rebalancer (#7638) e 58fef24 . 4 months ago %)
2704 lines (1831 loc) - 212 KB

Preview | Code Blame Raw (D% 2 ~ =

Citus Technical Documentation

The purpose of this document is to provide comprehensive technical documentation for Citus, in particular the distributed

database implementation.

Table of Contents

¢ Citus Concepts
o Principles
* Use of hooks

e Query planner
o High-level design/flow:

o Distributed Query Planning with Examples in Citus (as of Citus 12.1)

o Logical Planner & Optimizer

o Combine query planner

o

Restriction Equivalence

o

Recurring Tuples

planner_hook = distributed_planner

Distributed Query Planner
he distributed query planner is entered through the . This is the hook that Postgres

calls instead of fstandard_planner

If the input query is trivial (e.g., no joins, no subqueries/ctes, single table and single shard), we create a very simple Plannedstmt . If the query is
not trivial, call standard_planner to build a PlannedStmt . For queries containing a distributed table or reference table, we then proceed with
distributed planning, which overwrites the planTree inthe PlannedStmt .

Distributed planning (CreateDistributedPlan) tries several different methods to plan the query:

1. Fast-path router planner, proceed if the query prunes down to a single shard of a single table
2. Router planner, proceed if the query prunes down to a single set of co-located shards

3. Modification planning, proceed if the query is a DML command and all joins are co-located
4. Recursive planning, find CTEs and subqueries that cannot be pushed down and go back to 1

5. Logical planner, constructs a multi-relational algebra tree to find a distributed execution plan

planner_hook = distributed_planner

Distributed Query Planner

The distributed query planner is entered through the distributed planner function in distributed planner.c . This is the hook that Postgres
calls instead of standard_planner .

If the input query is trivial (e.g., no joins, no subqueries/ctes, single table and single shard), we create a very simple PlannedStmt . If the query is
not trivial, call standard_planner to build a Plannedstmt . For queries containing a distributed table or reference table, we then proceed with

distributed planning, which overwrites the planTree inthe PlannedStmt .

Distributed planning (CreateDistributedPlan) tries several different methods to plan the query:

IlFast-path router planner, proceed if the query prunes down to a single shard of a single table
2. Router planner, proceed if the query prunes down to a single set of co-located shards

3. Modification planning, proceed if the query is a DML command and all joins are co-located
4. Recursive planning, find CTEs and subqueries that cannot be pushed down and go back to 1

5. Logical planner, constructs a multi-relational algebra tree to find a distributed execution plan

Fast Path Planner skips cost estimation
prior to query distribution

Fast Path Router Planner

The Fast Path Router Planner is specialized in optimizing queries that are both simple in structure and certain to touch a single shard.
Importantly, it targets queries on a single shard distributed, citus local or reference tables. This does not mean the planner is restricted to trivial
queries; it can handle complex SQL constructs like GROUP BY , HAVING , DISTINCT , etc. as long as these operate on a single table and involve an

equality condition on the distribution key (distribution_key = X). The main SQL limitation for fast path distributed query planning is the
subquery/CTE support. Those are left to the next planner: Router planner.

he aim of this planner is to avoid relying on PostgreSQL's standard_planner() for planning, which performs unnecessary computations like cost

estimation, irrelevant for distributed planning. Skipping the standard_planner has significant performance gains for OLTP workloads.
focusing on "shard-reachable” queries, the Fast Path Router Planner is able to bypass the need for more computationally expensive planning

processes, thereby accelerating query execution.

11/6/2024

PG16 commit that broke the planner hook

Rework query relation permission checking
@ alvherre committed on Dec 6, 2022

Currently, information about the permissions to be checked on relations
mentioned in a query is stored in their range table entries. So the
executor must scan the entire range table looking for relations that
need to have permissions checked. This can make the permission checking
part of the executor initialization needlessly expensive when many
inheritance children are present in the range range. While the
permissions need not be checked on the individual child relations, the
executor still must visit every range table entry to filter them out.

This commit moves the permission checking information out of the range
table entries into a new plan node called RTEPermissionInfo. Every
top-level (inheritance “root") RTE_RELATION entry in the range table
gets one and a list of those is maintained alongside the range table.
This new list is initialized by the parser when initializing the range
table. The rewriter can add more entries to it as rules/views are
expanded. Finally, the planner combines the lists of the individual
subgueries into one flat list that is passed to the executor for
checking.

To make it quick to find the RTEPermissionInfo entry belonging to a
given relation, RangeTblEntry gets a new Index field 'perminfoindex’
that stores the corresponding RTEPermissionInfo’'s index in the query's
list of the latter.

ExecutorCheckPerms_hook has gained another List * argument; the
signature is now:
typedef bool (*ExecutorCheckPerms_hook_type) (List *rangeTable,

List *rtePermInfos,

bool ereport_on_violation);
The first argument is no longer used by any in-core uses of the hook,
but we leave it in place because there may be other implementations that
do. Implementations should likely scan the rtePermInfos list to
determine which operations to allow or deny.

Author: Amit Langote <amitlangote@9@gmail.com:>
Discussion: https://postgr.es/m/CA+HiwgG]IDmUhDSFv-U2qhKIJt9ST7Xh9IXC_irsA|

Currently, information about the permissions to be checked on relations
mentioned in a query is stored in their range table entries. Rl
executor must scan the entire range table looking for relations that
need to hawve permissions checked. This can make the permission checking
part of the executor initialization needlessly expensiwve when many
inheritance children are present in the range range. While the
permissions need not be checked on the individual child relations, the
executor still must visit every range table entry to filter them out.

table. The rewriter can add more entries to it as rules/views are
S GELZLELFinally, the planner combines the lists of the individual
subgueries into one flat list that is passed to the executor for

To make it gquick to find the RTEPermissionInfo entry belonging to a
given relation, RangeTblEntry gets a new Index field 'perminfoindex’
that stores the corresponding RTEPermissionInfo’s index in the guery's
list of the latter.

Supporting a New PostgreSQL Version in Your Extension

- A Citus Case Study

20

New entry in PlannedStmt struct

75
76
77

78
79
80

¥ srcfinclude/nodes/plannodes.h [E] -

4

@@ -75,6 +75,9 @@ typedef struct PlannedStmt

75
76
77
78
79
80
81
82
83

List *rtable; /* list of RangeTblEntry nodes */

List *permInfos; f* list of RTEPermissionInfo nodes for rtable

* entries needing one */

/* rtable indexes of target relations for INSERT/UPDATE/DELETE/MERGE */

List *resultRelations; /* integer list of RT indexes, or NIL */

New entry in RangeTblEntry struct

t/include/nodes/parsenodes.h Lg :
973 * securityQuals is a list of security barrier quals (boolean expressions),
974 * to be tested in the listed order before returning a row from the
975 * relation. It is always NIL in parser output. Entries are added by the
@@ -1e54,11 +1025,16 @@
1825 * current query; this happens if a DO ALSO rule simply scans the original
1826 * target table. We leave such RTEs with their original lockmode so as to
127 * avoid getting an additional, lesser lock.
1828 + =
1229 + * perminfoindex is 1-based index of the RTEPermissionInfo belonging to
1838 + * this RTE in the containing struct's list of same; @ if permissions need
1e31 + * not be checked for this RTE.
1832 */
1833 0id relid; /¥ 0ID of the relation */
1834 char relkind; /* relation kind (see pg_class.relkind) */
1835 int rellockmode; /* lock level that query requires on the rel */
1@36 struct TableSampleClause *tablesample; /* sampling info, or NULL */
137 + Index perminfoindex;
1838

INSERT failure in a distributed table

CREATE TABLE test table (id int primary key, name text);

INSERT INTO test table VALUES (1, 'beana’);

SELECT create_distributed table('test _table', 'y’); ## Citus signature
INSERT INTO test table VALUES (2, 'erida');

ERROR: invalid perminfoindex 1 in RTE with relid 25395

What happened?
test table has the perminfoindex entry as 1
A PlannedStmt struct somewhere missing permInfos list

One-line fix in the fast path planner

PG16 compatibility - Rework PlannedStmt and Query's Permission Info
naisila merged 4 commits into main from naisila/pgls part3 [0 on Aug 9, 2023

L) Conversation 27 -0- Commits 4 () Checks 28 Files changed 13
E[I Changes from all commits v File filter» Conversations « @Bv

> : 5 HENEEN src/backend/distributed/planner/deparse_shard_query.c @

> "y 44 HEEE src/backend/distributed/planner/distributed_planner.c Lg

v oy 3 EEE src/backend/distributed/planner/fast_path_router_planner.c Lg

L @@ -136,6 +136,9 @@ GeneratePlaceHolderPlannedStmt(Query *parse)
136 136 result-»>stmt_len = parse-»stmt_len;
137 137
138 138 result-»>rtable = copyObject(parse->rtable);
139 + #if PG_VERSIOM_NUM »= PG_VERSION_l6
148 + result->permInfos = copyObject(parse->rteperminfos);
141+ #endif
139 142 result-»planTree = (Plan *) plan;
148 143 result->hasReturning = (parse-»returninglist != NIL);
141 144

Process of committing into the Citus repo

1. Find the relevant PG commit breaking the current logic
Rework query relation permission checking - postgres/postgres@a61b1f7 (github.com)

2. Fix the logic in Citus and put a reference to the PG commit in the commit
description

PG16 compatibility - Rework PlannedStmt and Query's Permission Info (... -
citusdata/citus@b36¢c431 (github.com)

descr: This commit is in the series of PG16 compatibility commits.
It handles the Permission Info changes in PG1l6. See below:

We had crashes because perminfoindexes were not updated in the finalized
planned statement after distributed planner hook.

So, basically, everywhere we set a query's or planned statement's rtable
entry, we need to set the rteperminfos/permInfos accordingly.

Relevant PG commit:

a61b1174823c9c4179c95226a461f1le7a367764b

https://github.com/postgres/postgres/commit/a61b1f74823c9c4f79c95226a461f1e7a367764b
https://github.com/citusdata/citus/commit/b36c431abbe3f70ba18de5610570adfa9d72d56d

2 - Extension sanity

* Q: How to find all the broken pieces?
A: Hopefully you have a nice and thorough test suite

* Q: How to keep track of everything?
A: GitHub issues are a nice way

Max mem usage changed and it's no longer less than 8MB, seen in columnar_memory
It's still less than 9MB. TopMemoryContext simply has more children.

.. . . . Fix ERROR: duplicate key value violates unique constraint iN columnar_write concurrency_index
This issue encapsulates what remains to be fixed in #6952 .
. . . B . . . Extra DEBUG: pathlist hook for columnar table am, Seenin drop_column_partitioned_table
Check the tests in Cl in the linked PR in order to see the exact error which | point to with _
Not getting expected ERROR: correlated subqueries are not supported when the FROM clause contains a CTE or

"seen in" labels.

subquery , Seen in multi_subquery in_where reference clause

tESt_16—ChECk_mU|t' 12/175 fa|||ng Fix ERROR: relation "rule table 1" cannot have ON SELECT rules , S€enin undistribute table
test-16_check-multi-1 9/210 failing this fails on plain PG16 whereas it succeeds in plain PG15, so not related to Citus

test-16_check-columnar 3/42 failing Fix ERROR: “rule table 1" is not a view, S€e€nin undistribute table

test-16_check-isolation 2/93 failing this fails on plain PG16 whereas it succeeds in plain PG15, so not related to Citus

test-16 check—mx 2}'68 falllng Not getting expected ERROR: cannot alter table because an extension depends on it , Seenin undistribute table

Different pa_compare_tables output, seen in merge

test-16_check-operations 1/16 failing
test-16_check-vanilla 4/215 failing

Fix ERROR: EXPLAIN ANALYZE is currently not supported for MERGE INTO ... commands with repartitioning, seenin

merge

2 - Extension sanity

If possible, in terms of engineering resources,
you can be even more proactive

Build and run tests of your extension regularly with
REL XX_STABLE branch of PostgreSQL

1. Fix build issues instantly,

2. Fix test issues instantly, or document them for later

3 - PG new features integration

Resources to track PostgreSQL XX’s improvements/additions.
* Official release notes

* Feature matrix (which features added in which version)

* “Waiting for PGXX” blog www.depesz.com
* pgPedia notes

http://www.depesz.com/

3 - PG new features integration

Two types of improvements/features
1. Simply work with your extension

2. Need development in your extension

3 - PG new features integration

Stuff that just work with Citus (the majority do!):

Shards are regular Postgres tables, and queries are sent to
shards as regular SQL commands. Any improvement on
these are reflected on distributed tables such as
performance, index/constraint improvements etc.

Citus does not interfere with replication, checkpointing,
vacuum, logging, monitoring, psql, fdw, contrib modules
and many other things. Any improvement on these areas is
also reflected.

3 - PG new features integration

Stuff that need development/testing to work with Citus:

When the SQL interface changes, Citus needs to learn how to
send it properly to the worker nodes.

* Syntax on a command is expanded
* New command is introduced

 New functions /data types added

Decide what to do based on your
resources!

1. Extend the codebase to support new stuff

2. Extend testing for new features that work with your
extension, but might need maintenance for future changes

3. Print meaningful error messages for unsupported stuff

In Citus, we tracked these with yet another GitHub issue

PG16RC1 Support - SQL changes, new features #/138
© 26 tasks done | naisila opened this issue on Aug 23, 2023 - 1 comment

naisila commented on Aug 23, 2023 + edited by gokhangulbiz ~ Member U

Introduction

#6952 introduced PG16Beta3 compatibility with Citus's current features and regression tests by fixing #7017.
This issue tracks how Citus will handle PostgreSQL 16's SQL changes and new features. Resources that we used are the following:

+ Official release notes

¢ pgPedia notes

Examples with PG16

1. Extend the codebase to support new stuff

Features to support in Citus

We plan to support the following new options:

CREATE COLLATION (rules = ...) postgres/postgres@ 3@a53b7
}~ PG16 - Add rules option to CREATE COLLATION #7185

TRUNCATE triggers on foreign tables postgres/postgres@ 3beeagsa
}~ PG16 - Add citus_truncate_trigger for Citus foreign tables #7170
GENERIC_PLAN option for EXPLAIN postgres/postgres@ 3ces5284
}~ PG16 - Add GENERIC_PLAN option to EXPLAIN #7141
VACUUM SKIP_DATABASE_STATS, ONLY_DATABASE_STATS postgres/postgres@ a46a7@1
} PG16 compatibility - new options to vacuum and analyze #7114
VACUUM PROCESS_MAIN postgres/postgres@ 4211fbd
} PG16 compatibility - new options to vacuum and analyze #7114

VACUUM/ANALYZE BUFFER_USAGE_LIMIT postgres/postgres(@ 1cbbeed
} PG16 compatibility - new options to vacuum and analyze #7114

Examples with PG16

2. Extend testing for new features that work with your
extension, but might need maintenance for future changes

Add regression tests or just test locally

Most of PG16's new additions simply work with Citus. However, we add tests for some of them to ensure consistency and
maintainability for the future. For some other additions, testing locally is sufficient.

JSON_ARRAYAGG and JSON_OBJECTAGG postgres/postgres@ 7e81ac4
}e Add tests with JSON_ARRAYAGG and JSON_OBJECTAGG aggregates #7186

Publications with schema and table of the same schema postgres/postgres(@ 13a185¢
}e Add tests with publications with schema and table of the same schema #7184

random_normal() postgres/postgres@ 38d8176
}> PG16 - Add tests with random_normal #7183

CREATE DATABASE (rules = ...) postgres/postgres@ 38a53b7
Works with our partially supported CREATE DATABASE for distributed databases
} PG16 - Add tests for createdb with ICU RULES option #7161

Examples with PG16

3. Print meaningful error messages for unsupported stuff

Meaningful error messages for currently unsupported features

For now, we will not provide support for the following, but we will print error messages with possible hints/workarounds for the

user:

GRANT ... WITH INHERIT postgres/postgres@ e3ce2de
}~ PG16 - Don't propagate GRANT ROLE with INHERIT/SET option #7190
GRANT ... WITH SET postgres/postgres(@ 3d14e17
}~ PG16 - Don't propagate GRANT ROLE with INHERIT/SET option #7190
Batch insertion during COPY into a foreign table postgres/postgres@ 97da482
COPY FROM is already not supported for Citus foreign tables
}~ Adds test for COPY FROM failure in Citus foreign tables #7160
ALTER TABLE ... SET STORAGE DEFAULT postgres/postgres@ b9424de
Already changing storage is not supported and errors out, adding some tests
}e Add tests for CREATE/ALTER TABLE .. STORAGE in PG16 #7140

CREATE STATISTICS without a user-specitied name postgres/postgres@ 624aa2a
} PG16 - Throw meaningful error for stats without a name on Citus tables #7136

PG17 progress on Citus

* Successful compilation changes are merged.

* Extension sanity is in progress

* PG17Beta2 Support - Regression tests sanity - Issue #7653 -
citusdata/citus (github.com)

* Implementing new features — not started yet

* Settotrack in PG17.0 Support - SQL changes, new features - Issue
#7708 - citusdata/citus (github.com)

* Expected to add PG17 support on Citus by the end of 2024

https://github.com/citusdata/citus/issues/7653
https://github.com/citusdata/citus/issues/7708
https://github.com/citusdata/citus/issues/7708

Revisiting Strategy

General: Follow the PG release schedule
1. Successful compilation

2. Extension sanity
* Make sure everything works as before — use your test suite!

3. PG new features integration
* Enhance your extension with PG’s newly added features/SQL
changes

Thank you for your attention!

Q&A

Feedback QR:

Supporting a New PostgreSQL Version in Your Extension
- A Citus Case Study

11/6/2024

=
(@,
A
O
—
=

Meet our

Postgres
team at

PGConf EU

lllllllll

llllllll

llllllll

lllllll

lllllll

llllll

llllll

llll

m Microsoft

Got 3 minutes?
We'd love your input
on some of our
Postgres work

, Get your FREE socks (& 4oy
N* @ Microsoft booth SR |
4 ' h,

aaaa
::::

Have you TALKING

listened to
TalkingPostgres.com?

I _/
WITH CLAIRE GIORDANO

"""
llll

llll
""""

lllll

)
ooooo

lllll

POSETTE:
An Event for Postqg

20. Now in it’s 4" year!

A free & virtual developer event

Subscribe to news > ako.ms/posette- subscrlbe

	Slide 1: Supporting a New PostgreSQL Version in Your Extension - A Citus Case Study
	Slide 2: Outline of this talk
	Slide 3: PostgreSQL major releases
	Slide 4: Postgres: Designed to be easily extensible
	Slide 5: Extensions using PostgreSQL hooks
	Slide 6: Citus: Extension leveraging PG hooks
	Slide 7: Questions for your extension: Is it compatible with the new PG release?
	Slide 8: Answers for Citus Pre-PG16 support
	Slide 9: Strategy
	Slide 10: Follow the PG release schedule
	Slide 11: Example – PG15 Timeline (2022)
	Slide 12: Example – PG16 Timeline (2023)
	Slide 13: 1 - Successful compilation
	Slide 14: 2 - Extension sanity
	Slide 15: Citus Planner Hook Example with PG16
	Slide 16: Citus Technical Documentation
	Slide 17: planner_hook = distributed_planner
	Slide 18: planner_hook = distributed_planner
	Slide 19: Fast Path Planner skips cost estimation prior to query distribution
	Slide 20: PG16 commit that broke the planner hook
	Slide 21: New entry in PlannedStmt struct
	Slide 22: New entry in RangeTblEntry struct
	Slide 23: INSERT failure in a distributed table
	Slide 24: One-line fix in the fast path planner
	Slide 25: Process of committing into the Citus repo
	Slide 26: 2 - Extension sanity
	Slide 27: 2 - Extension sanity
	Slide 28: 3 - PG new features integration
	Slide 29: 3 - PG new features integration
	Slide 30: 3 - PG new features integration
	Slide 31: 3 - PG new features integration
	Slide 32: Decide what to do based on your resources!
	Slide 33: Examples with PG16
	Slide 34: Examples with PG16
	Slide 35: Examples with PG16
	Slide 36: PG17 progress on Citus
	Slide 37: Revisiting Strategy
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

