
STACKIT is the Schwarz Group's cloud and colocation provider

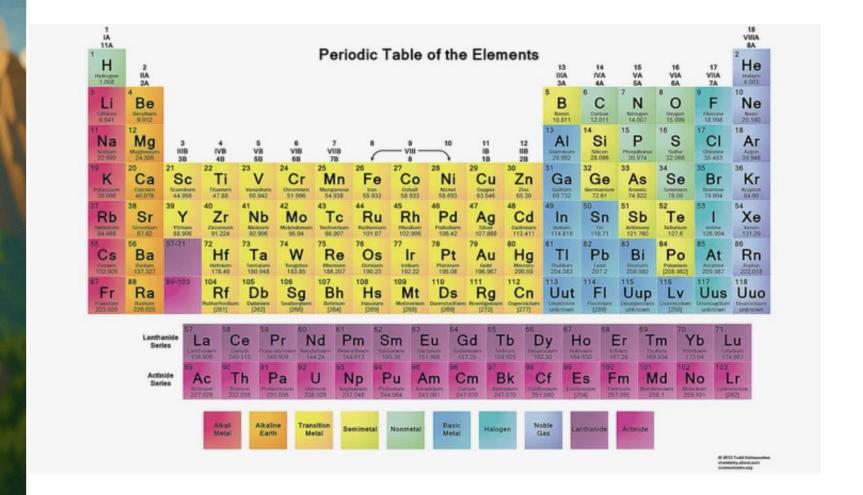
C5

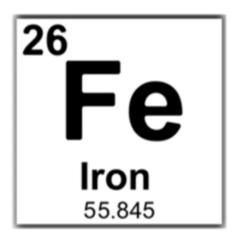
Agenda

Note: The CVE Program and components

Q Vulnerability Hunting 101

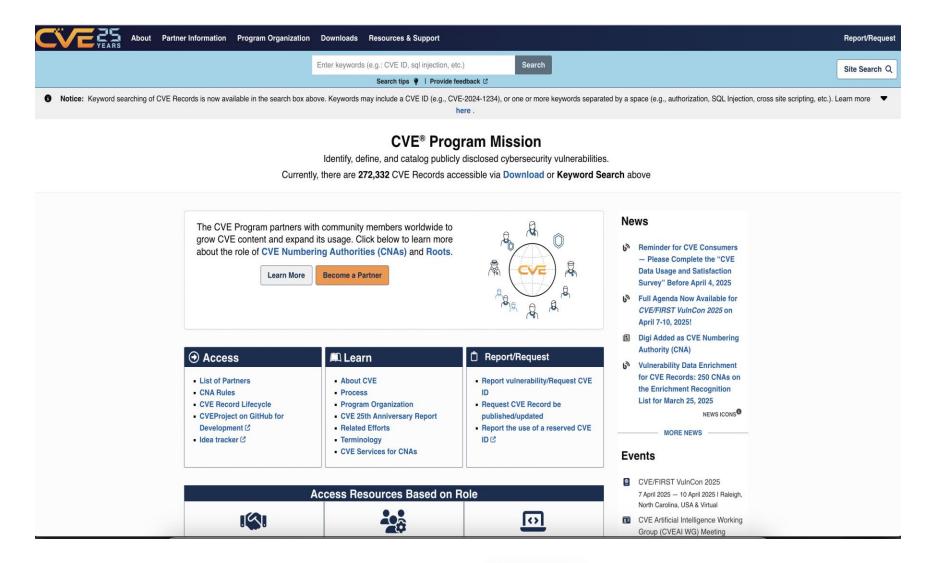
PostgreSQL & CVE Handling


% Bug Reporting & Resolution


Takeaways & Action Steps

What is CVE?

- Free and publicly available
- Catalog of CVEs:
 - CVE ID : CVE-yyyy-nnnn
 - Description :


[Problem Type] [Affected Component] [Cause] [Impact]

- atleast one public reference

	Show: 25 Sort by: CVE ID (new to	old) •	
CVE-2025-2291	CNA: PostgreSQL		
·	ry in PgBouncer due to auth_query not taking into account Posts an attacker to log in with an already	gres its	
Show more			
CVE-2021-3935	CNA: Fedora Project (Infrastructure Softwar	e)	
0	o use "cert" authentication, a man-in-the-middle attacker can inj		
arbitrary SQL queries when a co verification and Show more	nnection is first established, despite the use of TLS certificate		
verification and	nnection is first established, despite the use of TLS certificate CNA: Debian GNU/Linux		
verification and Show more CVE-2015-6817	CNA: Debian GNU/Linux nen configured with auth_user, allows remote attackers to gain l	ogin	
verification and Show more CVE-2015-6817 PgBouncer 1.6.x before 1.6.1, w	CNA: Debian GNU/Linux nen configured with auth_user, allows remote attackers to gain l	ogin	
verification and Show more CVE-2015-6817 PgBouncer 1.6.x before 1.6.1, w access as auth_user via an unkr CVE-2015-4054 PgBouncer before 1.5.5 allows r	CNA: Debian GNU/Linux nen configured with auth_user, allows remote attackers to gain l own username.		
verification and Show more CVE-2015-6817 PgBouncer 1.6.x before 1.6.1, w access as auth_user via an unkr CVE-2015-4054 PgBouncer before 1.5.5 allows r	CNA: Debian GNU/Linux nen configured with auth_user, allows remote attackers to gain I own username. CNA: Debian GNU/Linux emote attackers to cause a denial of service (NULL pointer dere		

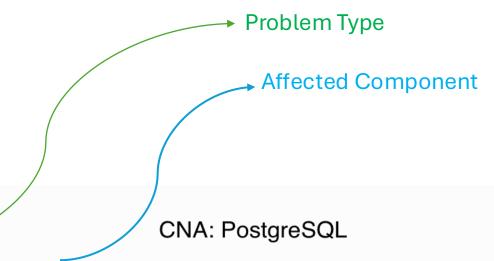
attackers to cause a denial of service (daemon outage) via a long database name in a...

CVE-2025-2291 CNA: PostgreSQL

CNA: PostgreSQL

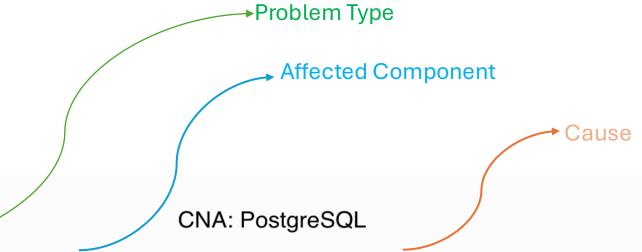
CVE-2025-2291

CNA: PostgreSQL

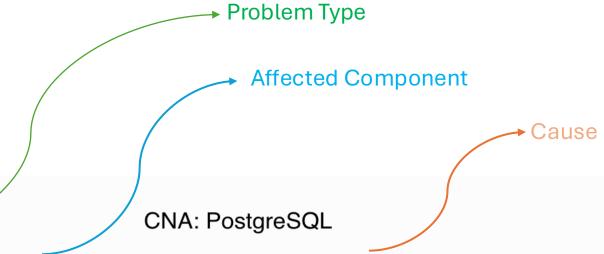

Problem type

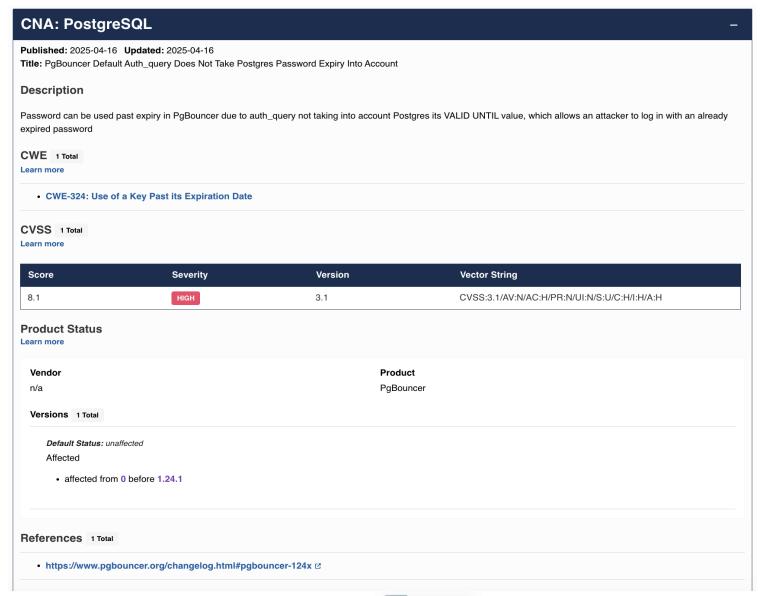
CVE-2025-2291

CNA: PostgreSQL

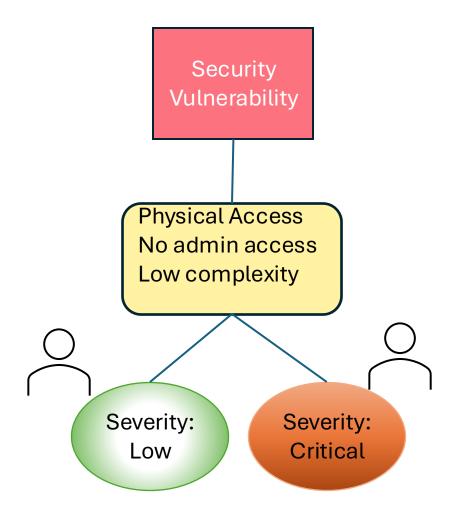


CVE-2025-2291





CVE-2025-2291 details



CVSS

- Common Vulnerability Scoring System
- A numerical score to determine the severity of a vulnerability

Score Range	Severity
0.0	None
0.1 – 3.9	Low
4.0 – 6.9	Medium
7.0 – 8.9	High
9.0 – 10.0	Critical

Determining CVSS

Base metric group: mandatory

Temporal metric group

Environmental metric group

Base metric group

Exploitability metrics			
Attack Vector	: N, A, L ,P		
Attack Complexity	: L, H		
Privileges Required	: N, L, H		
User Interaction	: N, R		

Impact metrics Confidentiality impact : N, L, H Integrity imapct : N, L, H Availability impact : N, L, H Scope : U, C

Temporal metric group

Explicit code maturity : X, U, P, F, H

Remediation level : X, O, T, W, U

Report confidence : X, U, R, C

Environmental metric group

Exploitability Metrics

Attack Vector

Attack Complexity

Privileges Required

User Interaction

Scope

Impact Metrics

Confidentiality metrics

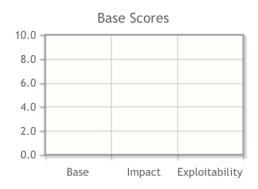
Integrity Impact

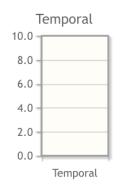
Availability Impact

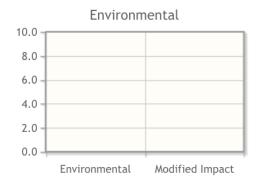
Impact Subscore Modifier

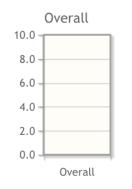
Confidentiality Requirement : X, L, M, H

Integrity Requirement : X, L, M, H

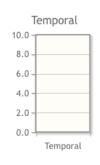

Availability Requirement : X, L, M, H

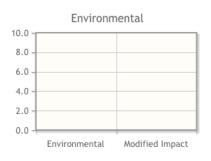


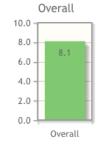



CVSS calculator

• https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator




CVSS Base Score: NA
Impact Subscore: NA
Exploitability Subscore: NA
CVSS Temporal Score: NA
CVSS Environmental Score: NA
Modified Impact Subscore: NA
Overall CVSS Score: NA



CVSS Base Score: 8.1 Impact Subscore: 6.0

Exploitability Subscore: 1.4

CVSS Temporal Score: NA

CVSS Environmental Score: NA Modified Impact Subscore: NA

Overall CVSS Score: 8.1

Show Equations

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

^{* -} All base metrics are required to generate a base score.

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

Attack vector

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

Attack Complexity

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

Privs Req

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

↓ User interaction

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

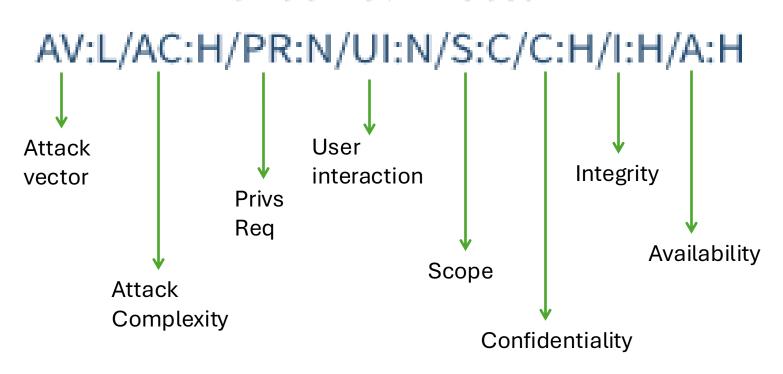
Confidentiality

CVSS v3.1 Vector

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

V Integrity

CVSS v3.1 Vector


AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

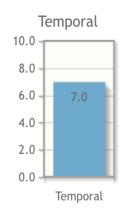
Availability

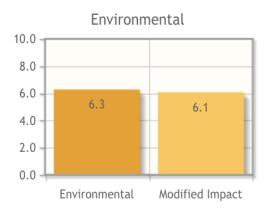
CVSS v3.1 Vector

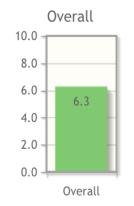
CVSS calculator Temporal and Env. metrics

Temporal Score Metrics					
Exploit Code Maturity (E) Not Defined (E:X) Unproven that exploit exists (E:U) Proof of concept code (E:P) Functional exploit exists (E:F) High (E:H) Remediation Level (RL) Not Defined (RL:X) Official fix (RL:O) Temporary fix (RL:T) Workaround (RL:W) Unavailable (RL:U) Report Confidence (RC) Not Defined (RC:X) Unknown (RC:U) Reasonable (RC:R) Confirmed (RC:C)					
Environmental Score Metrics					
Attack Vector (MAV) Not Defined (MAV:X) Network (MAV:N) Adjacent Network (MAV:A) Local (MAV:L) Physical (MAV:P) Attack Complexity (MAC) Not Defined (MAC:X) Low (MAC:L) High (MAC:H) Privileges Required (MPR) Not Defined (MPR:X) None (MPR:N) Low (MPR:L) High (MPR:H) User Interaction (MUI) Not Defined (MUI:X) None (MUI:N) Required (MUI:R) Scope (MS) Not Defined (MS:X) Unchanged (MS:U) Changed (MS:C)	Impact Metrics Confidentiality Impact (MC) Not Defined (MC:X) None (MC:N) Low (MC:L) High (MC:H) Integrity Impact (MI) Not Defined (MI:X) None (MI:N) Low (MI:L) High (MI:H) Availability Impact (MA) Not Defined (MA:X) None (MA:N) Low (MA:L) High (MA:H)	Impact Subscore Modifiers Confidentiality Requirement (CR) Not Defined (CR:X) Low (CR:L) Medium (CR:M) High (CR:H) Integrity Requirement (IR) Not Defined (IR:X) Low (IR:L) Medium (IR:M) High (IR:H) Availability Requirement (AR) Not Defined (AR:X) Low (AR:L) Medium (AR:M) High (AR:H)			

CVSS calculator All metrics





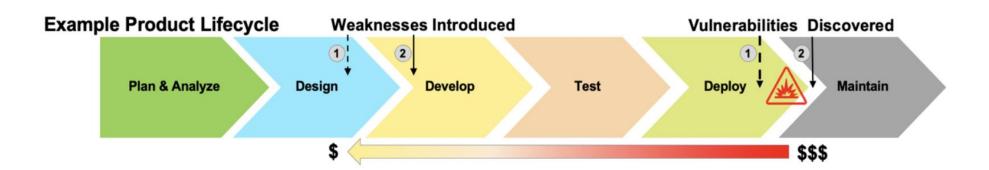


CVSS calculator All metrics

Impact Subscore: 6.0
Exploitability Subscore: 1.4
CVSS Temporal Score: 7.0
CVSS Environmental Score: 6.3

CVSS Base Score: 8.1

Overall CVSS Score: 6.3


Modified Impact Subscore: 6.1



Common Weakness enumeration

- Community developed list of software and hardware weaknesses.
- Root cause mapping for CVE

CWE navigation https://cwe.mitre.org/

View CWEs by

Software Development

Hardware Design

All Weaknesses

Other Select Options

CWE navigation

Software Development

```
699 - Software Development
  — 🗉 🔼 API / Function Errors - (1228)
   – 🗉 🔼 Audit / Logging Errors - (1210)
   — 

■ C Authentication Errors - (1211)
   — 

■ C Authorization Errors - (1212)
   — 
■ Bad Coding Practices - (1006)

— 

■ G Behavioral Problems - (438)

— 

■ 

Business Logic Errors - (840)

       Communication Channel Errors - (417)
       Complexity Issues - (1226)

— 

    □ Concurrency Issues - (557)

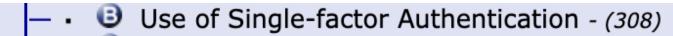
    ± Credentials Management Errors - (255)

   — 

☐ Cryptographic Issues - (310)
   – 🖭 🔼 Data Integrity Issues - (1214)
          Data Processing Errors - (10)
```


CWE navigation

Software Development


699 - Software Development — □ G API / Function Errors - (1228) Use of Inherently Dangerous Function - (242) Use of Function with Inconsistent Implementations - (474) Undefined Behavior for Input to API - (475) Use of Obsolete Function - (477) Use of Potentially Dangerous Function - (676) • Use of Low-Level Functionality - (695) Exposed Dangerous Method or Function - (749) Audit / Logging Errors - (1210) Improper Output Neutralization for Logs - (117) • 1 Truncation of Security-relevant Information - (222) Omission of Security-relevant Information - (223) Obscured Security-relevant Information by Alternate Name - (224) Insufficient Logging - (778) Logging of Excessive Data - (779) Authentication Errors - (1211) Authentication Bypass by Alternate Name - (289) Authentication Bypass by Spoofing - (290) Authentication Bypass by Capture-replay - (294) improper Certificate Validation - (295) Reflection Attack in an Authentication Protocol - (301) Incorrect Implementation of Authentication Algorithm - (303) Authentication Bypass by Primary Weakness - (305) Missing Authentication for Critical Function - (306) Improper Restriction of Excessive Authentication Attempts - (307) Use of Single-factor Authentication - (308) Use of Password System for Primary Authentication - (309) ■ Key Exchange without Entity Authentication - (322) Use of Client-Side Authentication - (603) Overly Restrictive Account Lockout Mechanism - (645)

CWE navigation

Software Development

CWE-308: Use of Single-factor Authentication

Weakness ID: 308

Vulnerability Mapping: ALLOWED

Abstraction: Base

View customized information:

Conceptual

Operational

Mapping Friendly

Complete

Custom

Description

The use of single-factor authentication can lead to unnecessary risk of compromise when compared with the benefits of a dual-factor authentication

Extended Description

While the use of multiple authentication schemes is simply piling on more complexity on top of authentication, it is inestimably valuable to have suc passwords is rampant on the internet. Without the added protection of multiple authentication schemes, a single mistake can result in the comprom and also easy to use, they should be implemented and required.

Common Consequences

Impact

Details

Bypass Protection Mechanism

Scope: Access Control

If the secret in a single-factor authentication scheme gets compromised, full authentication is possible.

Potential Mitigations

Phase(s) **Mitigation**

Architecture and Design

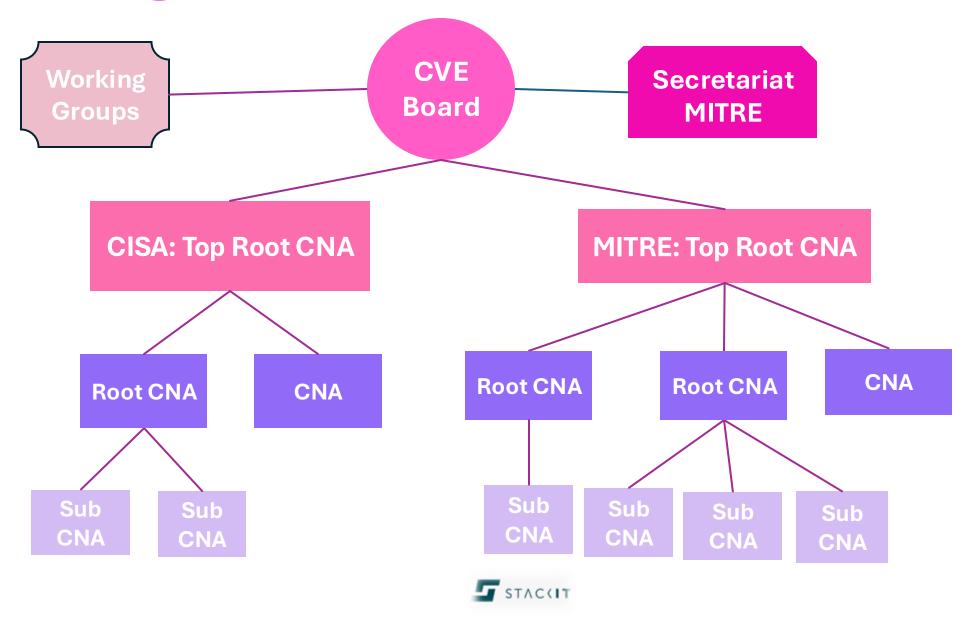
Use multiple independent authentication schemes, which ensures that -- if one of the methods is compromised

Enrichment

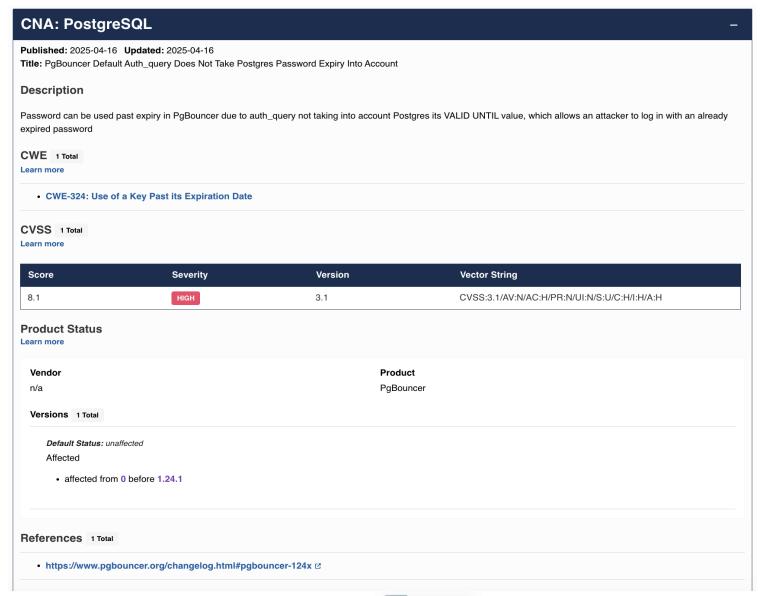
- ADP (Authorised Data Publisher)
- Enriches a published CVE
- + Review Research
- +CVSS score
- +CWE
- + Additional information

Eg: NVD, CISA, Github Advisory Databases

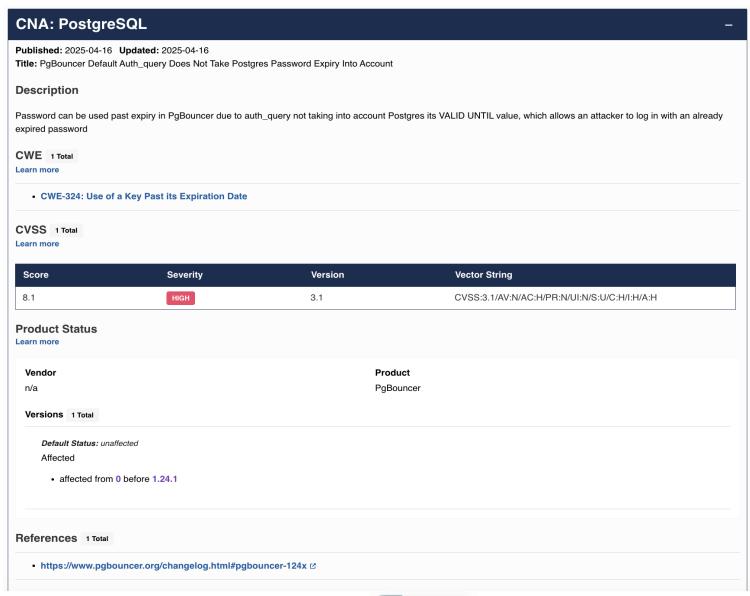
What is CNA?

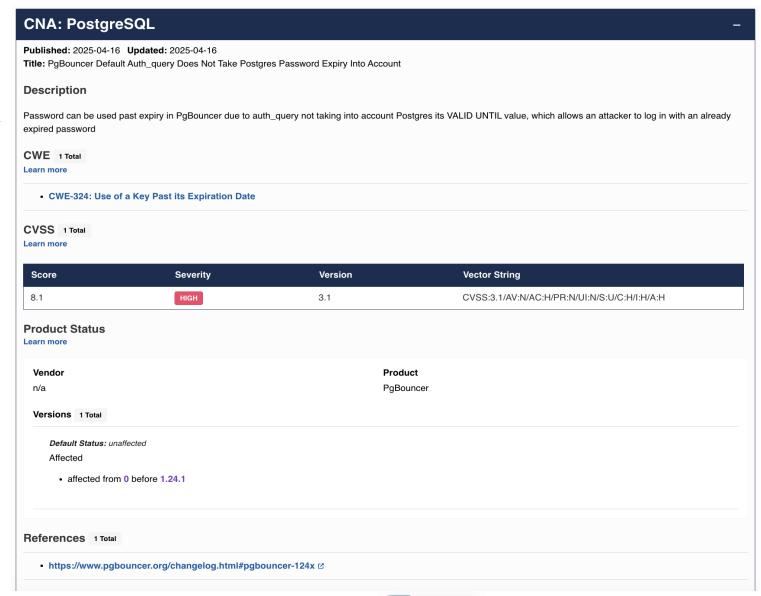


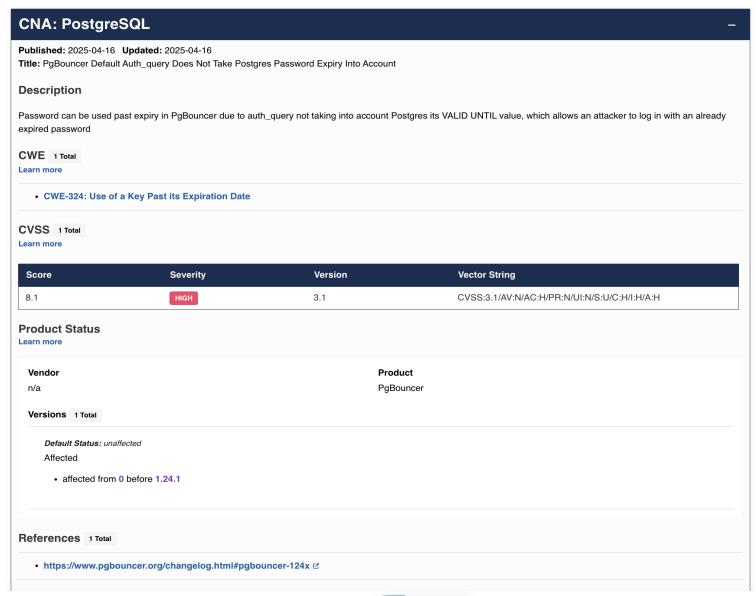
- CVE numbering Authority
- Every CNA has a specific scope
- CNAs control CVE publication
- Provide enrichment since April 2024

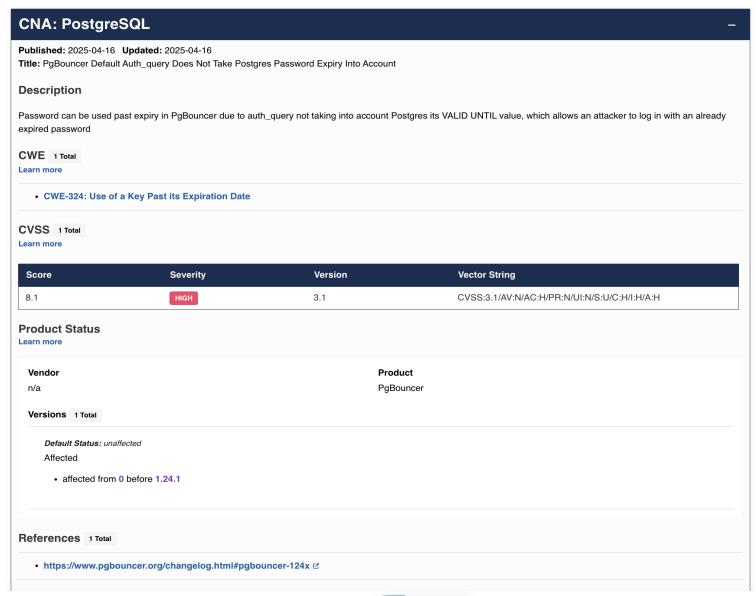


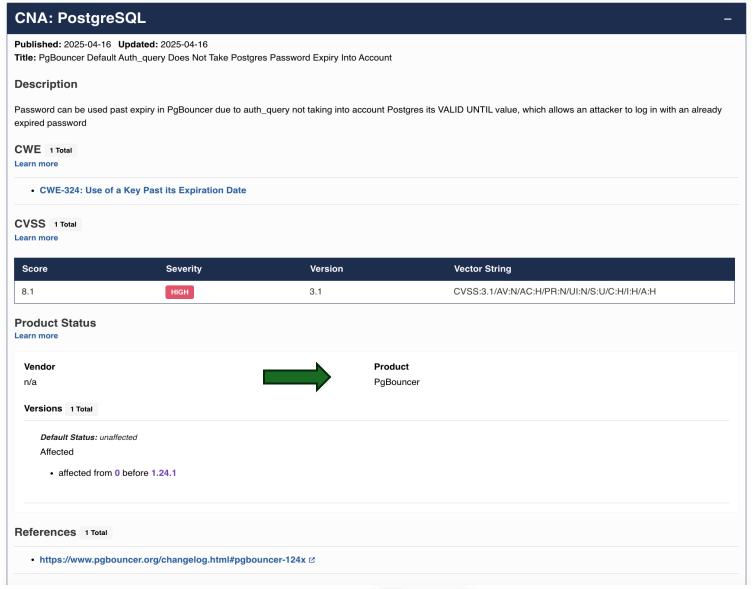
CNA organization

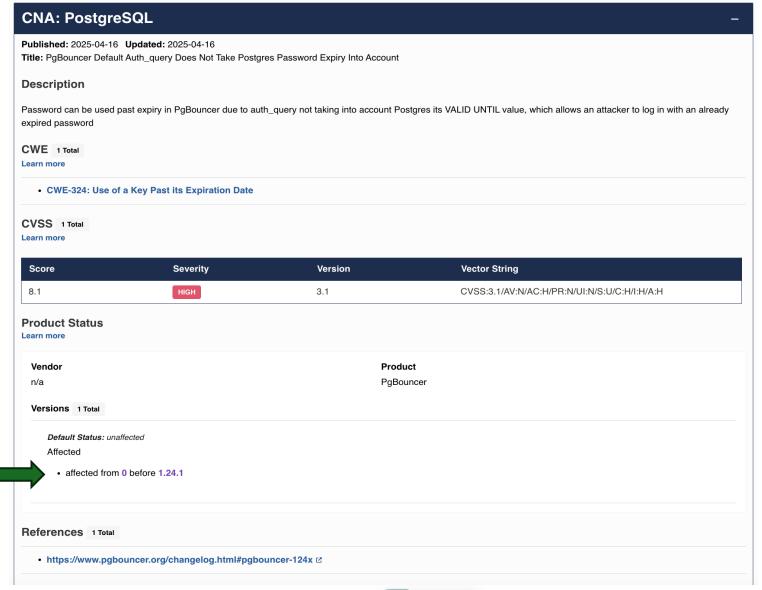


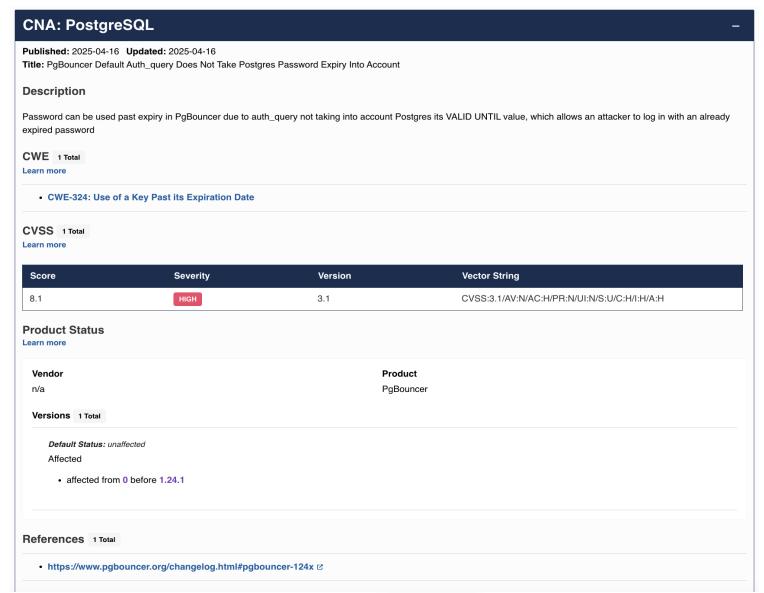












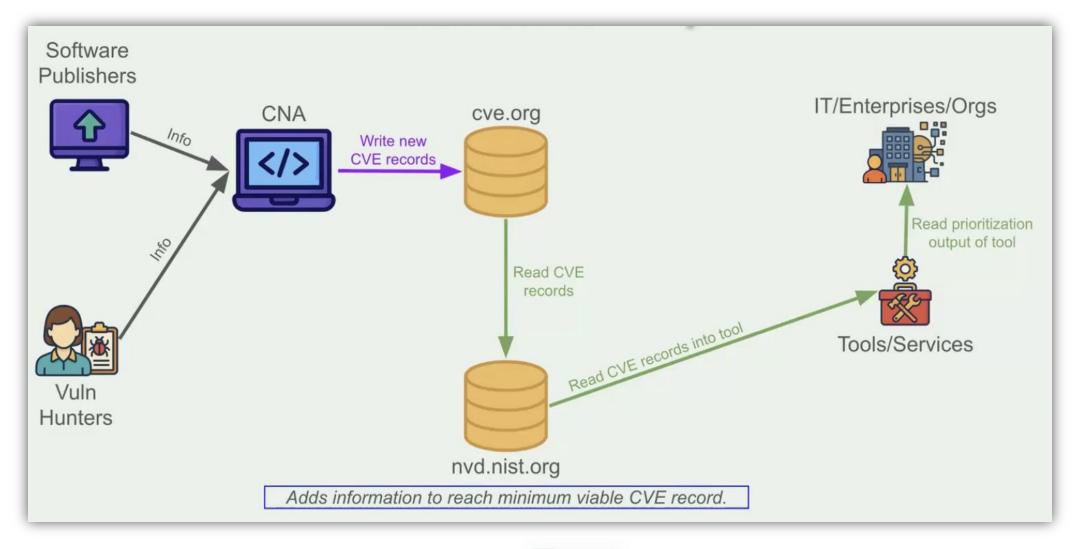
Reference example

Security

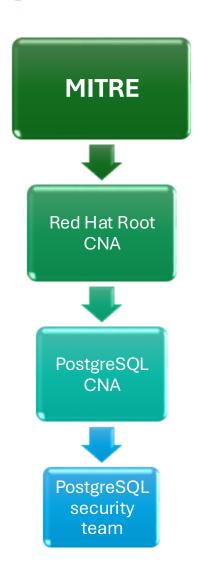
• Fix CVE-2025-2291: Previously PgBouncer did not take into account the VALID UNTIL of a user password when querying for password hashes using its auth_query. So if PgBouncer is used as a transparent proxy in front of Postgres it could allow passwords that had already expired. To solve this issue the default auth_query and the examples of custom auth_query functions in the documentation have been changed to take VALID UNTIL into account. If you are using a custom auth_query you should update that accordingly. If you are using the default auth_query, you can either update to PgBouncer 1.24.1 or change your config to use the new default auth_query on a previous release of PgBouncer.

Fixes

- Fix PAM support by reverting pam authentication support in HBA file. (#1291) (bug introduced in 1.24.0)
- Fix bug when decrementing user connection count. This was included in the tag of 1.24.0 on GitHub, but the release tarball did not contain this fix. (#1238) (bug introduced in 1.24.0)
- Add test_load_balance_hosts.py to the tarball. (#1282)
- Fix issues with tests to allow them to be run by Debian packagers. (#1266, #1250)


Docs

Update auth_query example to set a safe search_path. (#1245)


Current CVE lifecycle

Projects:

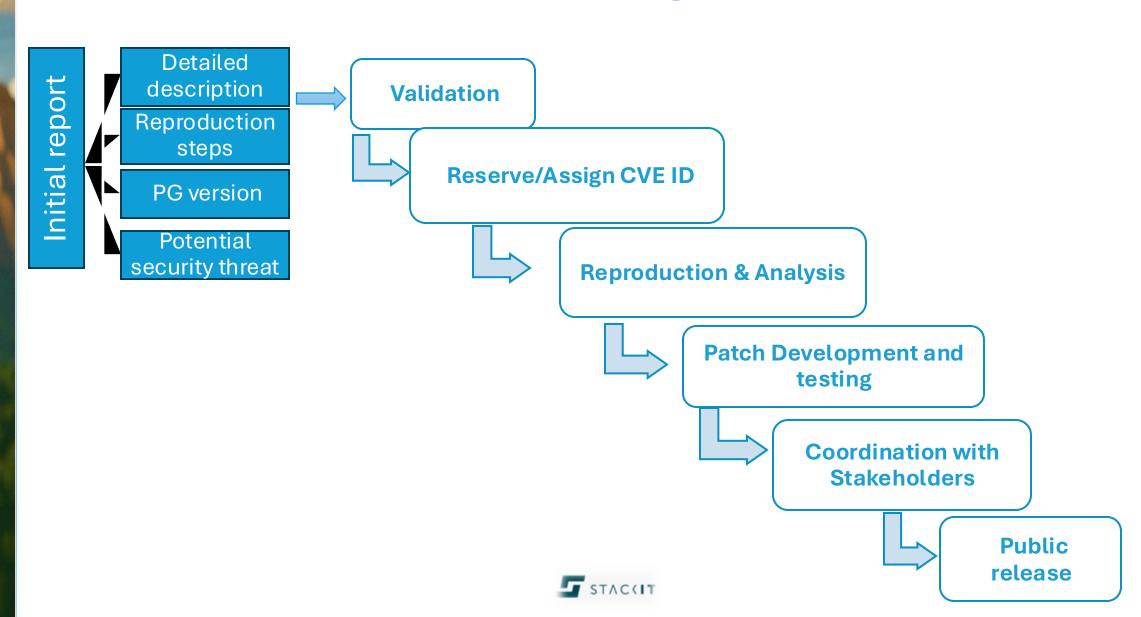
- PostgreSQL
- PostgreSQL RPM and DEB packaging
- PostgreSQL windows/mac installers
- pgJDBC
- psqlODBC
- pgAdmin
- •pgbouncer

PostgreSQL

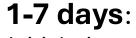
PostgreSQL installers

security@postgresql.org

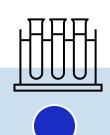
pgAdmin


PostgreSQL JDBC driver pgsql-jdbc-security@lists.postgresql.org

Anything else > security@postgresql.org



Lifecycle of a reported bug



Postgres Security release Timeline(approx)

Initial triage

Coordination

Fixed Release

1-4 weeks:

Analysis & patch development

https://www.postgresql.org/developer/roadmap/

At least one minor release every quarter

The second Thursday of February, May, August, and November.

Exception: more releases in between for important bug fixes

https://www.postgresql.org/support/security/

Known PostgreSQL Security Vulnerabilities in Supported Versions

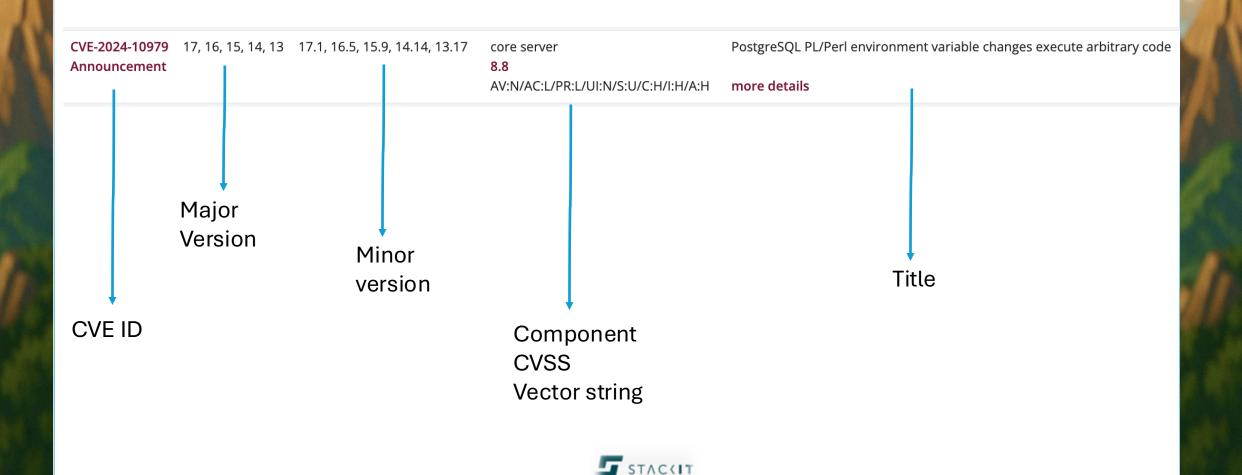
You can filter the view of patches to show just patches for version:

17 - 16 - 15 - 14 - 13 - all

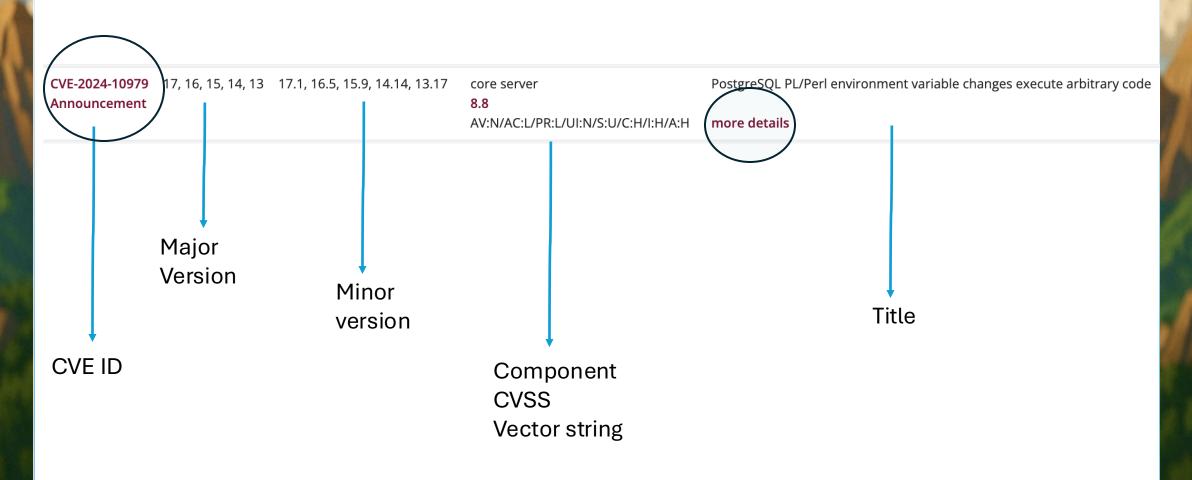
Reference	Affected	Fixed	Component & CVSS v3 Base Score	Description
CVE-2025-1094 Announcement	17, 16, 15, 14, 13	17.3, 16.7, 15.11, 14.16, 13.19	client 8.1	PostgreSQL quoting APIs miss neutralizing quoting syntax in text that fails encoding validates
			AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H	more details
CVE-2024-10979 Announcement	17, 16, 15, 14, 13	17.1, 16.5, 15.9, 14.14, 13.17	core server	PostgreSQL PL/Perl environment variable changes execute arbitrary code
			AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H	more details
CVE-2024-10978 Announcement	17, 16, 15, 14, 13	17.1, 16.5, 15.9, 14.14, 13.17	core server 4.2	PostgreSQL SET ROLE, SET SESSION AUTHORIZATION reset to wrong user ID
			AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N	more details
CVE-2024-10977	17, 16, 15, 14, 13	17.1, 16.5, 15.9, 14.14, 13.17	client	PostgreSQL libpq retains an error message from man-in-the-middle
Announcement			3.1 AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:L/A:N	more details
CVE-2024-10976	17, 16, 15, 14, 13	17.1, 16.5, 15.9, 14.14, 13.17	core server	PostgreSQL row security below e.g. subqueries disregards user ID changes
Announcement			4.2 AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N	more details

CVE-2024-10979 17, 16, 15, 14, 13 17.1, 16.5, 15.9, 14.14, 13.17 **Announcement**

core server 8.8


AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

PostgreSQL PL/Perl environment variable changes execute arbitrary code


more details

CVE-2024-10979 Announcement

CVE-2024-10979

PostgreSQL PL/Perl environment variable changes execute arbitrary code

Incorrect control of environment variables in PostgreSQL PL/Perl allows an unprivileged database user to change sensitive process environment variables (e.g. PATH). That often suffices to enable arbitrary code execution, even if the attacker lacks a database server operating system user. Versions before PostgreSQL 17.1, 16.5, 15.9, 14.14, 13.17, and 12.21 are affected.

The PostgreSQL project thanks Coby Abrams for reporting this problem.

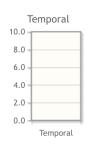
Version Information

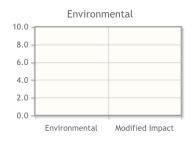
Affected Version	Fixed In	Fix Published
17	17.1	Nov. 14, 2024
16	16.5	Nov. 14, 2024
15	15.9	Nov. 14, 2024
14	14.14	Nov. 14, 2024
13	13.17	Nov. 14, 2024
12	12.21	Nov. 14, 2024

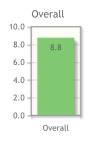
For more information about PostgreSQL versioning, please visit the versioning page.

CVSS 3.0

Overall Score	8.8
Component	core server
Vector	AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H







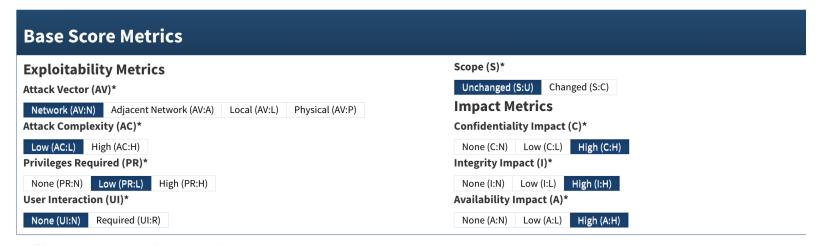
CVSS Base Score: 8.8

Impact Subscore: 5.9

Exploitability Subscore: 2.8

CVSS Temporal Score: NA

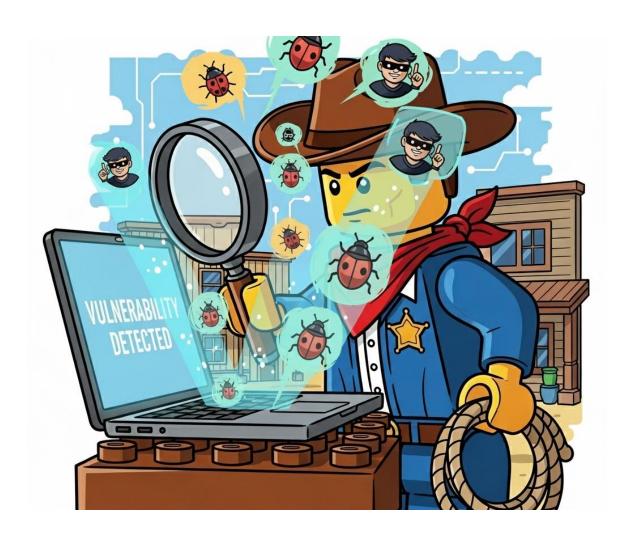
CVSS Environmental Score: NA


Modified Impact Subscore: NA

Overall CVSS Score: 8.8

Show Equations

CVSS v3.1 Vector


AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Vulnerability Hunter....

Security Issues

CVE-2025-8713: PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table

CVSS v3.1 Base Score: 3.1

Supported, Vulnerable Versions: 13 - 17.

PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a us view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histogr 2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22

The PostgreSQL project thanks Dean Rasheed for reporting this problem.

CVE-2025-8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Untrusted data inclusion in pg_dump in PostgreSQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Martin Rakhmanov, Matthieu Denais, and RyotaK for reporting this problem.

CVE-2025-8715: PostgreSQL pg_dump newline in object name executes arbitrary code in psql client and in restore target server

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Improper neutralization of newlines in pg_dump in PostgreSQL allows a user of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands inside a purpose-crafted object name. The same attacks can achieve SQL injection as a superuser of the restore target server. pg_dumpall, pg_restore, and pg_upgrade are also affected. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected. Versions before 11.20 are unaffected. CVE-2012-0868 had fixed this class of problem, but version 11.20 reintroduced it.

Security Issues

CVE-2025-8713: PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table

CVSS v3.1 Base Score: 3.1

Supported, Vulnerable Versions: 13 - 17.

PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data that a row security policy intended to hide. PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histograms and most-common-values lists. CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Dean Rasheed for reporting this problem.

CVE-2025-8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Untrusted data inclusion in pg_dump in PostgreSQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Martin Rakhmanov, Matthieu Denais, and RyotaK for reporting this problem.

CVE-2025-8715: PostgreSQL pg_dump newline in object name executes arbitrary code in psql client and in restore target server

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Improper neutralization of newlines in pg_dump in PostgreSQL allows a user of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands inside a purpose-crafted object name. The same attacks can achieve SQL injection as a superuser of the restore target server. pg_dumpall, pg_restore, and pg_upgrade are also affected. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected. Versions before 11.20 are unaffected. CVE-2012-0868 had fixed this class of problem, but version 11.20 reintroduced it.

Security Issues

CVE-2025-8713: PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table

CVSS v3.1 Base Score: 3.1

Supported, Vulnerable Versions: 13 - 17.

PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data that a row security policy intended to hide. PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histograms and most-common-values lists. CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Dean Rasheed for reporting this problem.

CVE-2025-8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

untrusted data inclusion in pg_dump in PostgresQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Martin Rakhmanov, Matthieu Denais, and RyotaK for reporting this problem.

CVE-2025-8715: PostgreSQL pg_dump newline in object name executes arbitrary code in psql client and in restore target server

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Improper neutralization of newlines in pg_dump in PostgreSQL allows a user of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands inside a purpose-crafted object name. The same attacks can achieve SQL injection as a superuser of the restore target server. pg_dumpall, pg_restore, and pg_upgrade are also affected. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected. Versions before 11.20 are unaffected. CVE-2012-0868 had fixed this class of problem, but version 11.20 reintroduced it.

Security Issues

CVE-2025-8713: PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table

CVSS v3.1 Base Score: 3.1

Supported, Vulnerable Versions: 13 - 17.

PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data that a row security policy intended to hide. PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histograms and most-common-values lists. CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Dean Rasheed for reporting this problem.

CVE-2025-8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Untrusted data inclusion in pg_dump in PostgreSQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Martin Rakhmanov, Matthieu Denais, and RyotaK for reporting this problem.

CVE-2025-8715: PostgreSQL pg_dump newline in object name executes arbitrary code in psql client and in restore target server

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Improper neutralization of newlines in pg_dump in PostgreSQL allows a user of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands inside a purpose-crafted object name. The same attacks can achieve SQL injection as a superuser of the restore target server. pg_dumpall, pg_restore, and pg_upgrade are also affected. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected. Versions before 11.20 are unaffected. CVE-2012-0868 had fixed this class of problem, but version 11.20 reintroduced it.

Score Range	Severity
0.0	None
0.1 – 3.9	Low
4.0 – 6.9	Medium
7.0 – 8.9	High
9.0 – 10.0	Critical

Security Issues

CVE-2025-8713: PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table

CVSS v3.1 Base Score: 3.1

Supported, Vulnerable Versions: 13 - 17.

PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a us view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histogr 2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22

The PostgreSQL project thanks Dean Rasheed for reporting this problem.

CVE-2025-8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Untrusted data inclusion in pg_dump in PostgreSQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Martin Rakhmanov, Matthieu Denais, and RyotaK for reporting this problem.

CVE-2025-8715: PostgreSQL pg_dump newline in object name executes arbitrary code in psql client and in restore target server

CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.

Improper neutralization of newlines in pg_dump in PostgreSQL allows a user of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands inside a purpose-crafted object name. The same attacks can achieve SQL injection as a superuser of the restore target server. pg_dumpall, pg_restore, and pg_upgrade are also affected. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected. Versions before 11.20 are unaffected. CVE-2012-0868 had fixed this class of problem, but version 11.20 reintroduced it.

Security Issues

CVE-2025-8713: PostgreSQL optimizer statistics can expose sampled data within a view, partition, or child table

CVSS v3.1 Base Score: 3.1

Supported, Vulnerable Versions: 13 - 17.

PostgreSQL optimizer statistics allow a user to read sampled data within a view that the user cannot access. Separately, statistics allow a user to read sampled data that a row security policy intended to hide. PostgreSQL maintains statistics for tables by sampling data available in columns; this data is consulted during the query planning process. Prior to this release, a user could craft a leaky operator that bypassed view access control lists (ACLs) and bypassed row security policies in partitioning or table inheritance hierarchies. Reachable statistics data notably included histograms and most-common-values lists. CVE-2017-7484 and CVE-2019-10130 intended to close this class of vulnerability, but this gap remained. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Dean Rasheed for reporting this problem.

CVF-2025 8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

CVSS v3.1 Base Score: 8.8

Supported, vuinerable Versions: 13 - 17.

Untrusted data inclusion in pg_dump in PostgreSQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.

The PostgreSQL project thanks Martin Rakhmanov, Matthieu Denais, and RyotaK for reporting this problem.

CVE-2025-8715: PostgreSQL pg_dump newline in object name executes arbitrary code in psql client and in restore target server

CVSS v3.1 Base Score: 8.8

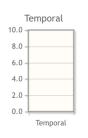
Supported, Vulnerable Versions: 13 - 17.

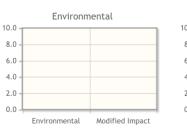
Improper neutralization of newlines in pg_dump in PostgreSQL allows a user of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands inside a purpose-crafted object name. The same attacks can achieve SQL injection as a superuser of the restore target server. pg_dumpall, pg_restore, and pg_upgrade are also affected. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected. Versions before 11.20 are unaffected. CVE-2012-0868 had fixed this class of problem, but version 11.20 reintroduced it.

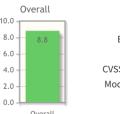
CVE-2025-8714: PostgreSQL pg_dump lets superuser of origin server execute arbitrary code in psql client

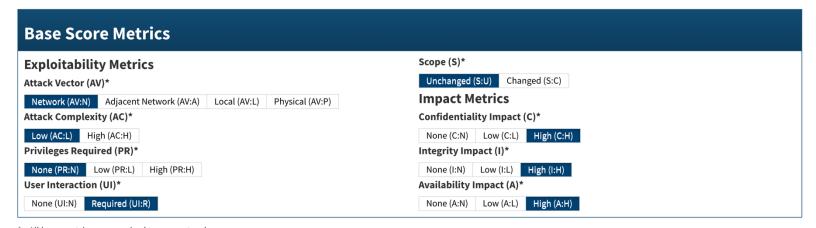
CVSS v3.1 Base Score: 8.8

Supported, Vulnerable Versions: 13 - 17.


Untrusted data inclusion in pg_dump in PostgreSQL allows a malicious superuser of the origin server to inject arbitrary code for restore-time execution as the client operating system account running psql to restore the dump, via psql meta-commands. pg_dumpall is also affected. pg_restore is affected when used to generate a plain-format dump. This is similar to MySQL CVE-2024-21096. Versions before PostgreSQL 17.6, 16.10, 15.14, 14.19, and 13.22 are affected.


 $The \ PostgreSQL\ project\ thanks\ Martin\ Rakhmanov,\ Matthieu\ Denais,\ and\ RyotaK\ for\ reporting\ this\ problem.$



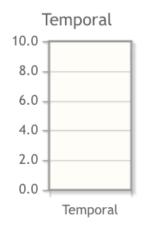

CVSS Base Score: 8.8
Impact Subscore: 5.9
Exploitability Subscore: 2.8
CVSS Temporal Score: NA
CVSS Environmental Score: NA
Modified Impact Subscore: NA

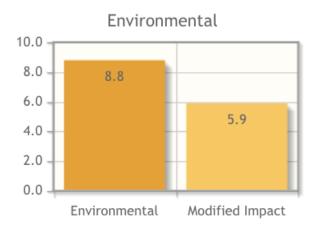
Overall CVSS Score: 8.8

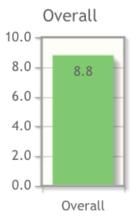
Show Equations

CVSS v3.1 Vector

AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H




^{* -} All base metrics are required to generate a base score.



Lets Patch.....

Time to patch

New release

Window of Vulnerability

Integration and automation

- Collaboration with cyber security team/network team/platform team
- Pro actively create internal and external policies
- Runbooks
- Scanning Tools

Guidelines for a DBA for proactive security measures

Zero trust principle: "Never trust, always verify"

- pg_hba.conf
- least privileged users
- encryptions
- pg_audit extension
- automated testing
- Improve monitoring and alerting regularly

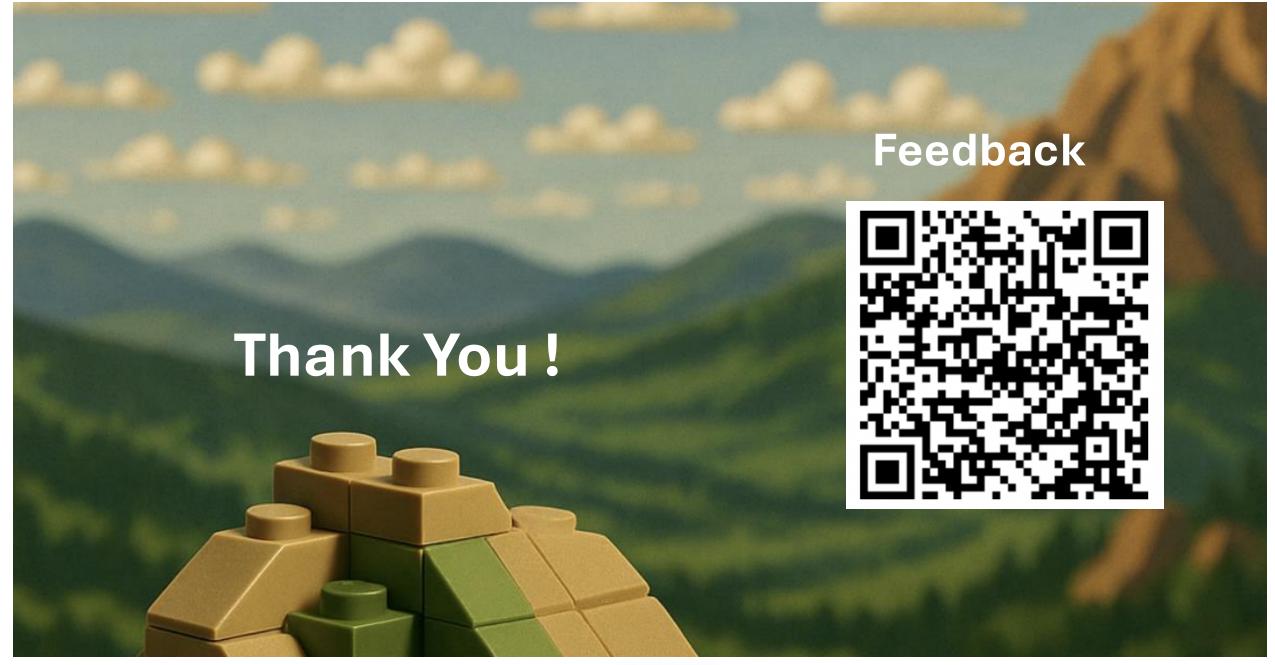
Compliance

Protection

Uptime

Stability

Reputation



Enable Notification

https://www.postgresql.org/list/ https://lists.postgresql.org/

Monitor Review Patch

