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Introduction

e people keep asking for “best practice”

e | have come to dislike that, because it often means “I don't want to understand
that and | don't want to think, just tell me what to do”

e it's much easier to name things that you should avoid

e hence this collection of “worst practices” from my experience as a consultant




Storing timestamps as strings / /
or numbers




Storing timestamps as strings

e it's a bad idea to store anything as string that isn't a string
e you'll end up with dates like 2024-02-30, 12.4.2024, 0000-00-00

Yes, you could check the values with a check constraint, but using the correct
data type checks it automatically.

® 2025-01-23 12:30:00+01 takes 23 bytes as string, but 8 bytes as
timestamp with time zone

e '2025-01-23 11:30:00+01' > '2025-01-23 03:30:00-08"' as string




Storing timestamps as offset from the epoch

e don't store timestamps in seconds since 1070-01-07 00:00:00 UTC
e it's fundamentally correct, but
o 1737631800 is harder to read than '2025-01-23 12:30:00+01".

o date arithmetic becomes more difficult, as you cannot use the timestamp
functions and operators directly (and complicated expressions in SQL
statements tend to lead to bad performance)

e there are exceptions to this rule, for example if all you ever need to calculate is
the difference in seconds

o but are you sure that the data will never be used for anything else?

G



About other data types

The same holds for other data types: always use the appropriate database type
e it's a bad idea to store anything as string that isn't a string

e store “valid from - valid to” as tstzrange

e use PostGIS for geographical coordinates

e use bytea for binary data, no encoded string

e use integer or bigint for integers, not numer-ic

e use bit varying for bitmaps

e use jsonb for JSON and xm1l for XML
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Using 4-byte integer for
auto-generated primary keys




The problem with auto-generated integer keys

e the maximum integeris 2°31-1=2147483647

e dont make the same mistake as the people who thought that 2°32 IP addresses
would be all mankind could ever need!

e sequence values get “lost” on rollback

e your table might grow bigger than you thought
(or you might delete and insert a lot)

e The canonical solution for the problem:

ALTER TABLE tab ALTER 1id TYPE bigint;

will rewrite the table = causes a long down time




Good practice: use bigint

e play it safe and always use bigint for auto-generated primary keys
e if the table grows large, you may need it
e if the table is small, wasting four bytes won't matter

e exception: small lookup tables that get referenced in big tables
= for those, choose integer or even smallint

o example: a table of the US states




Changing from integer to b1 gint without down time (1)

Add a new column and a trigger that fills it:

BEGIN;
ALTER TABLE tab ADD id2 bigint;

CREATE FUNCTION copy_id() RETURNS trigger
LANGUAGE plpgsql AS

SSBEGIN
NEW.id2 = NEW.1d;
RETURN NEW;

END;SS;

CREATE TRIGGER copy_id BEFORE INSERT OR UPDATE ON tab
FOR EACH ROW EXECUTE FUNCTION copy_tid();
COMMIT;




Changing from integer to b1 gint without down time (2)

Update the existing rows in batches:

UPDATE tab SET +id2 = 4d
WHERE id2 IS NULL
AND id < 1000000;

VACUUM tab;
UPDATE tab SET 1id2 = id
WHERE id2 IS NULL

AND id BETWEEN 1000001 AND 2000000;

VACUUM tab;




Changing from integer to b1 gint without down time (3)

Create a NOT NULL constraint and a unNIQuE index:

ALTER TABLE tab ADD CONSTRAINT tab_id2_notnull CHECK (id2 IS NOT NULL) NOT VALID;
ALTER TABLE tab VALIDATE CONSTRAINT tab_id2_notnull;

ALTER TABLE tab ALTER 1id2 SET NOT NULL;

ALTER TABLE tab DROP CONSTRAINT tab_id2_notnull;

CREATE UNIQUE INDEX CONCURRENTLY tab_pkey2 ON tab (1d2);




Changing from integer to b1 gint without down time (4)

Drop the old column and rename the new one, drop the trigger and create a new
primary key constraint:

BEGIN;

—-— works only if not referenced by a foreign key
ALTER TABLE tab DROP 1id;

DROP TRIGGER copy_id ON tab;
DROP FUNCTION copy_1id();
ALTER TABLE tab RENAME 1d2 TO 1d;

ALTER TABLE tab ADD PRIMARY KEY USING INDEX tab_pkey2;

COMMIT;




Define a comment column as //
varchar (255)




Define a comment column as varchar (255)

e someone will want to insert 300 characters

e the ALTER TABLE is cheap, but unnecessary

e if the application does not enforce a length limit, define the column as text
e text and varchar have the same implementation

e no performance penalty for text
on the contrary — you avoid the length check




Define all columns nullable




Define all columns nullable

e easy to do, because nullable is the default in SQL (more’s the pity!)

e experience tells: most nullable columns will eventually hold a NULL
= bad for data quality

e NULL makes queries complicated (harder for the optimizer)

WHERE col <> 42 OR col IS NULL -- or better:
WHERE col IS DISTINCT FROM 42

a JOIN b ON acol IS NOT DISTINCT FROM bcol -- cannot be indexed

e itis easytochange from noT NuLL to nullable, but not the other way around
(see the sample code from before!)

e in case of doubt, initially define columns as NOT NULL




Use large objects




What are large objects?

e special, non-standard API: To_create, lo_open, lowrite, loread, lo_close,
lo_unlink, ...

e data stored in the catalog table pg_largeobject
e each large object has an oid, which you can store in a table to refer to it
e the documentation says:

PostgreSQL also supports a storage system called “TOAST"[. . . | This makes the
large object facility partially obsolete.
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Problems with large objects

e no referential integrity between the large object and the table row that uses it
o needs a trigger or regular vacuumlo run to maintain integrity

e before PostgreSQL v17, large objects get dumped and restored in a single
transaction during pg_upgrade

o if you have many large objects, upgrade may become impossible
= v17 improved that, but the upgrade is still slow




Recommendations for large objects

e there is really no benefit in using large objects, with these exceptions:
o you need objects exceeding 1GB (but you don't)
o you need to stream writes to the object

e don't touch large objects, except with a long pole — use bytea instead

e large objects are unfortunately still used a lot, because the PostgreSQL JDBC

driver has the standard methods getBLOB () and setBLOB () operate on large
objects

e if you define a column as @Lob or @Lob String in Hibernate, you'll end up with
large objects

G



Use an ENUM type for lists that / /
can change




Using ENUM types

e Created with
CREATE TYPE state AS ENUM ('Ohio', 'California', 'Alabama', ...);

e you can add a new state:
ALTER TYPE state ADD VALUE 'Ontario' AFTER 'Ohio';

(but before v17, the new value cannot be used in the same transaction)

® YOU canrename a state:

ALTER TYPE state RENAME VALUE 'California' TO 'Hot Oven';




ENUM: Problems and recommendation

e you cannot delete a state:

ALTER TYPE state DROP VALUE 'Alabama';
ERROR: dropping an enum value is not implemented

e when in doubt, use a lookup table

CREATE TABLE state (
id smallint PRIMARY KEY,
name text UNIQUE NOT NULL

)3

e use ENUM types only for lists that can never lose entries




Define a check constraint that
can become FALSE




The problem with check constraints that become
FALSE over time

e abad example:

ALTER TABLE tab
ADD CHECK (col > current_timestamp);

e but the condition that is initially TRUE becomes FALSE over time (is not
“retroactively deterministic” in SQL standard terms)

e once the condition has become FALSE, any later update of the row will lead to an
error — even if a different column is updated

e make sure your check constraints are retroactively deterministic (and remember
that word to impress others!)

G



Bad check constraints that reference other tables

e we want to make sure that a certain name exists in another table

e writing a subquery into a check constraint will fail, but we can cheat with a
function:

CREATE FUNCTION f(text) RETURNS boolean
RETURN EXISTS (SELECT FROM other WHERE upper (name) = upper($1l));

ALTER TABLE tab
ADD CHECK (f(name));

e this won't check the constraint if a row is deleted from other...

e if you dump and restore the database, the data for tab could be restored first,
which would lead to an error = cannot restore the backup

G






Lying about a function’'s immutability

® CREATE FUNCTION name( ... ) RETURNS ...
{ IMMUTABLE | STABLE | VOLATILE }
LANGUAGE ... AS ...

e IMMUTABLE promises that a function always will always return the same result
for the same arguments

e PostgreSQL performs some sanity checks, but in general, it believes your claim
e lying about IMMUTABLE can result in:

o corrupted indexes

o rows ending up in the wrong table partition

o incorrect values in generated columns

o in general, bad query results and data corruption




Example: corrupted index caused by bad IMMUTABLE function

-— depends on "timezone", not really IMMUTABLE
CREATE FUNCTION get_hour (timestamp with time zone) RETURNS 1integer
IMMUTABLE RETURN CAST (extract(hour FROM $1) AS -integer);

CREATE TABLE ts (t timestamp with time zone);
CREATE UNIQUE INDEX ON ts (get_hour(t));

SET timezone = 'UTC';

INSERT INTO ts VALUES ('2024-11-19 22:00:00 Europe/Vienna');
INSERT 0 1

SET timezone = 'Asia/Kolkata';

INSERT INTO ts VALUES ('2024-11-19 22:00:00 Europe/Vienna');
INSERT 0 1







Motivation for an Entity-Attribute-Value design

If you want to create entities on the fly, you might find the following design attractive:

CREATE TABLE objects (
objectid bigint PRIMARY KEY);

CREATE TABLE attstring (
objectid bigint REFERENCES objects ON DELETE CASCADE NOT NULL,
attname text NOT NULL,
attval text,
PRIMARY KEY (objectid, attname));

CREATE TABLE attint (
objectid bigint REFERENCES objects ON DELETE CASCADE NOT NULL,
attname text NOT NULL,
attval integer,
PRIMARY KEY (objectid, attname));




Queries and DML with an Entity-Attribute-Value design

o fetching an object with N attributes has to fetch N+1 rows
e inserting one object with N attributes leads to N+1 INSERTS

o deleting one object with N attributes leads to N+1 DELETES
= these operations will be much slower

e updating one attribute will be a single UPDATE
o that might actually be a bit faster
o but update of several columns will become several UPDATES

e on top of all that, the 24 bytes header for each table row waste considerable
storage space
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A “simple” join with an Entity-Attribute-Value design

SELECT elal.attval AS person_name,
ela2.attval AS person_id,
e2al.attval AS address_street,
e2a2.attval AS address_city

FROM attint AS ela2

JOIN attstring AS elal

ON ela2.objectid = elal.objectid
LEFT JOIN attint AS e2a0

ON ela2.attval e2a0.attval
LEFT JOIN attstring AS e2al

ON e2a0.objectid = e2al.objectid
LEFT JOIN attstring AS e2a2

ON e2a0.objectid = e2a2.objectid

WHERE elal.attname = 'name'
AND ela2.attname = 'persnr'
AND e2a0@.attname = 'persnr'

AND e2al.attnhame = 'street'
AND e2a2.attname = 'city';

No comment!




Recommendations for alternatives

e don't use an Entity-Attribute-Value design
e justdon't
e itis actually much better to have the application run CREATE TABLE
e if you want to avoid creating objects, use jsonb
o common attributes (objectid) are normal table columns

o user-defined attributes become JSON attributes




Questions? /%

Link for feedback
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