
Laurenz Albe

Don’t do that!

Laurenz Albe
Talking Head
Email
laurenz.albe@cybertec.at

Phone
+43 670 605 6265

www.cybertec-postgresql.com

@cybertec-postgresql

www.youtube.com/@cybertecpostgresql

Database Products & Tools

● people keep asking for “best practice”

● I have come to dislike that, because it often means “I don’t want to understand
that and I don’t want to think, just tell me what to do”

● it’s much easier to name things that you should avoid

● hence this collection of “worst practices” from my experience as a consultant

Introduction

Storing timestamps as strings
or numbers

● it’s a bad idea to store anything as string that isn’t a string

● you’ll end up with dates like 2024-02-30, 12.4.2024, 0000-00-00

Yes, you could check the values with a check constraint, but using the correct
data type checks it automatically.

● 2025-01-23 12:30:00+01 takes 23 bytes as string, but 8 bytes as
timestamp with time zone

● '2025-01-23 11:30:00+01' > '2025-01-23 03:30:00-08' as string

Storing timestamps as strings

● don’t store timestamps in seconds since 1070-01-01 00:00:00 UTC

● it’s fundamentally correct, but

○ 1737631800 is harder to read than '2025-01-23 12:30:00+01'.

○ date arithmetic becomes more difficult, as you cannot use the timestamp
functions and operators directly (and complicated expressions in SQL
statements tend to lead to bad performance)

● there are exceptions to this rule, for example if all you ever need to calculate is
the difference in seconds

○ but are you sure that the data will never be used for anything else?

Storing timestamps as offset from the epoch

The same holds for other data types: always use the appropriate database type

● it’s a bad idea to store anything as string that isn’t a string

● store “valid from - valid to” as tstzrange

● use PostGIS for geographical coordinates

● use bytea for binary data, no encoded string

● use integer or bigint for integers, not numeric

● use bit varying for bitmaps

● use jsonb for JSON and xml for XML

About other data types

Using 4-byte integer for
auto-generated primary keys

● the maximum integer is 2ˆ31 - 1 = 2147483647

● don’t make the same mistake as the people who thought that 2ˆ32 IP addresses
would be all mankind could ever need!

● sequence values get “lost” on rollback

● your table might grow bigger than you thought
(or you might delete and insert a lot)

● The canonical solution for the problem:

ALTER TABLE tab ALTER id TYPE bigint;

will rewrite the table ⇒ causes a long down time

The problem with auto-generated integer keys

● play it safe and always use bigint for auto-generated primary keys

● if the table grows large, you may need it

● if the table is small, wasting four bytes won’t matter

● exception: small lookup tables that get referenced in big tables
⇒ for those, choose integer or even smallint

○ example: a table of the US states

Good practice: use bigint

Changing from integer to bigint without down time (1)

Add a new column and a trigger that fills it:

BEGIN;
ALTER TABLE tab ADD id2 bigint;

CREATE FUNCTION copy_id() RETURNS trigger
 LANGUAGE plpgsql AS
$$BEGIN
 NEW.id2 = NEW.id;
 RETURN NEW;
END;$$;

CREATE TRIGGER copy_id BEFORE INSERT OR UPDATE ON tab
 FOR EACH ROW EXECUTE FUNCTION copy_id();
COMMIT;

Changing from integer to bigint without down time (2)

Update the existing rows in batches:

UPDATE tab SET id2 = id
WHERE id2 IS NULL
 AND id < 1000000;

VACUUM tab;

UPDATE tab SET id2 = id
WHERE id2 IS NULL
 AND id BETWEEN 1000001 AND 2000000;

VACUUM tab;
...

Changing from integer to bigint without down time (3)

Create a NOT NULL constraint and a UNIQUE index:

ALTER TABLE tab ADD CONSTRAINT tab_id2_notnull CHECK (id2 IS NOT NULL) NOT VALID;

ALTER TABLE tab VALIDATE CONSTRAINT tab_id2_notnull;

ALTER TABLE tab ALTER id2 SET NOT NULL;

ALTER TABLE tab DROP CONSTRAINT tab_id2_notnull;

CREATE UNIQUE INDEX CONCURRENTLY tab_pkey2 ON tab (id2);

Changing from integer to bigint without down time (4)

Drop the old column and rename the new one, drop the trigger and create a new
primary key constraint:

BEGIN;

-- works only if not referenced by a foreign key
ALTER TABLE tab DROP id;

DROP TRIGGER copy_id ON tab;

DROP FUNCTION copy_id();

ALTER TABLE tab RENAME id2 TO id;

ALTER TABLE tab ADD PRIMARY KEY USING INDEX tab_pkey2;

COMMIT;

Define a comment column as
varchar(255)

● someone will want to insert 300 characters

● the ALTER TABLE is cheap, but unnecessary

● if the application does not enforce a length limit, define the column as text

● text and varchar have the same implementation

● no performance penalty for text
on the contrary – you avoid the length check

Define a comment column as varchar(255)

Define all columns nullable

● easy to do, because nullable is the default in SQL (more’s the pity!)

● experience tells: most nullable columns will eventually hold a NULL
⇒ bad for data quality

● NULL makes queries complicated (harder for the optimizer)
WHERE col <> 42 OR col IS NULL -- or better:
WHERE col IS DISTINCT FROM 42

a JOIN b ON acol IS NOT DISTINCT FROM bcol -- cannot be indexed

● it is easy to change from NOT NULL to nullable, but not the other way around
(see the sample code from before!)

● in case of doubt, initially define columns as NOT NULL

Define all columns nullable

Use large objects

● special, non-standard API: lo_create, lo_open, lowrite, loread, lo_close,
lo_unlink, . . .

● data stored in the catalog table pg_largeobject

● each large object has an oid, which you can store in a table to refer to it

● the documentation says:

PostgreSQL also supports a storage system called “TOAST” [. . .] This makes the
large object facility partially obsolete.

What are large objects?

● no referential integrity between the large object and the table row that uses it

○ needs a trigger or regular vacuumlo run to maintain integrity

● before PostgreSQL v17, large objects get dumped and restored in a single
transaction during pg_upgrade

○ if you have many large objects, upgrade may become impossible
⇒ v17 improved that, but the upgrade is still slow

Problems with large objects

● there is really no benefit in using large objects, with these exceptions:

○ you need objects exceeding 1GB (but you don’t)

○ you need to stream writes to the object

● don’t touch large objects, except with a long pole – use bytea instead

● large objects are unfortunately still used a lot, because the PostgreSQL JDBC
driver has the standard methods getBLOB() and setBLOB() operate on large
objects

● if you define a column as @Lob or @Lob String in Hibernate, you’ll end up with
large objects

Recommendations for large objects

Use an ENUM type for lists that
can change

● Created with
CREATE TYPE state AS ENUM ('Ohio', 'California', 'Alabama', ...);

● you can add a new state:
ALTER TYPE state ADD VALUE 'Ontario' AFTER 'Ohio';

(but before v17, the new value cannot be used in the same transaction)

● you can rename a state:
ALTER TYPE state RENAME VALUE 'California' TO 'Hot Oven';

Using ENUM types

● you cannot delete a state:
ALTER TYPE state DROP VALUE 'Alabama';
ERROR: dropping an enum value is not implemented

● when in doubt, use a lookup table
CREATE TABLE state (
 id smallint PRIMARY KEY,
 name text UNIQUE NOT NULL
);

● use ENUM types only for lists that can never lose entries

ENUM: Problems and recommendation

Define a check constraint that
can become FALSE

● a bad example:
ALTER TABLE tab
ADD CHECK (col > current_timestamp);

● but the condition that is initially TRUE becomes FALSE over time (is not
“retroactively deterministic” in SQL standard terms)

● once the condition has become FALSE, any later update of the row will lead to an
error – even if a different column is updated

● make sure your check constraints are retroactively deterministic (and remember
that word to impress others!)

The problem with check constraints that become
FALSE over time

● we want to make sure that a certain name exists in another table

● writing a subquery into a check constraint will fail, but we can cheat with a
function:
CREATE FUNCTION f(text) RETURNS boolean
RETURN EXISTS (SELECT FROM other WHERE upper(name) = upper($1));

ALTER TABLE tab
ADD CHECK (f(name));

● this won’t check the constraint if a row is deleted from other...

● if you dump and restore the database, the data for tab could be restored first,
which would lead to an error ⇒ cannot restore the backup

Bad check constraints that reference other tables

Lie about a function’s immutability

● CREATE FUNCTION name(...) RETURNS ...
{ IMMUTABLE | STABLE | VOLATILE }
LANGUAGE ... AS ...

● IMMUTABLE promises that a function always will always return the same result
for the same arguments

● PostgreSQL performs some sanity checks, but in general, it believes your claim

● lying about IMMUTABLE can result in:

○ corrupted indexes
○ rows ending up in the wrong table partition
○ incorrect values in generated columns
○ in general, bad query results and data corruption

Lying about a function’s immutability

Example: corrupted index caused by bad IMMUTABLE function

-- depends on "timezone", not really IMMUTABLE
CREATE FUNCTION get_hour(timestamp with time zone) RETURNS integer
 IMMUTABLE RETURN CAST (extract(hour FROM $1) AS integer);

CREATE TABLE ts (t timestamp with time zone);
CREATE UNIQUE INDEX ON ts (get_hour(t));

SET timezone = 'UTC';

INSERT INTO ts VALUES ('2024-11-19 22:00:00 Europe/Vienna');
INSERT 0 1

SET timezone = 'Asia/Kolkata';

INSERT INTO ts VALUES ('2024-11-19 22:00:00 Europe/Vienna');
INSERT 0 1

Use an Entity-Attribute-Value design

Motivation for an Entity-Attribute-Value design

If you want to create entities on the fly, you might find the following design attractive:

CREATE TABLE objects (
 objectid bigint PRIMARY KEY);

CREATE TABLE attstring (
 objectid bigint REFERENCES objects ON DELETE CASCADE NOT NULL,
 attname text NOT NULL,
 attval text,
 PRIMARY KEY (objectid, attname));

CREATE TABLE attint (
 objectid bigint REFERENCES objects ON DELETE CASCADE NOT NULL,
 attname text NOT NULL,
 attval integer,
 PRIMARY KEY (objectid, attname));

● fetching an object with N attributes has to fetch N+1 rows

● inserting one object with N attributes leads to N+1 INSERTs

● deleting one object with N attributes leads to N+1 DELETEs
⇒ these operations will be much slower

● updating one attribute will be a single UPDATE

○ that might actually be a bit faster

○ but update of several columns will become several UPDATEs

● on top of all that, the 24 bytes header for each table row waste considerable
storage space

Queries and DML with an Entity-Attribute-Value design

A “simple” join with an Entity-Attribute-Value design

SELECT e1a1.attval AS person_name,
 e1a2.attval AS person_id,
 e2a1.attval AS address_street,
 e2a2.attval AS address_city
FROM attint AS e1a2
 JOIN attstring AS e1a1
 ON e1a2.objectid = e1a1.objectid
 LEFT JOIN attint AS e2a0
 ON e1a2.attval = e2a0.attval
 LEFT JOIN attstring AS e2a1
 ON e2a0.objectid = e2a1.objectid
 LEFT JOIN attstring AS e2a2
 ON e2a0.objectid = e2a2.objectid
WHERE e1a1.attname = 'name'
 AND e1a2.attname = 'persnr'
 AND e2a0.attname = 'persnr'
 AND e2a1.attname = 'street'
 AND e2a2.attname = 'city';

No comment!

● don’t use an Entity-Attribute-Value design

● just don’t

● it is actually much better to have the application run CREATE TABLE

● if you want to avoid creating objects, use jsonb

○ common attributes (objectid) are normal table columns

○ user-defined attributes become JSON attributes

Recommendations for alternatives

Questions?

Link for feedback

Affiliations & Recognitions

Our partners at PGConf.EU

