Don't do that!

Laurenz Albe

~(-CYBERTEC

POSTGRESQL SERVICES & SUPPORT

Laurenz Albe
Talking Head

Email
laurenz.albe@cybertec.at

Phone
+43 670 605 6265

www.cybertec-postgresqgl.com

PROUD CONTRIBUTOR TO (

o
IN @cybertec-postgresq| PostgreSQL

() www.youtube.com/@cybertecpostgresg|

AUSTRIA (HQ)

CYBERTEC POSTGRESQL
INTERNATIONAL (HQ)

ESTONIA

CYBERTEC POSTGRESQL
NORDIC

SWITZERLAND

CYBERTEC POSTGRESQL
SWITZERLAND

POLAND

CYBERTEC POSTGRESQL
POLAND

URUGUAY

CYBERTEC POSTGRESQL
SOUTH AMERICA

INDIA

CYBERTEC POSTGRESQL
INDIA PRIVATE LIMITED

SOUTH AFRICA

CYBERTEC POSTGRESQL
SOUTH AFRICA

Database Products & Tools

CYBERTEC CYBERTEC

GRATOR)(CYPEX PGEE E':-scaleﬁeld

z ~~ CYBERTEC
PGNATCH »2PGKL :':l-ISCCI|EﬁE|C| secul @ LakeHouse

SQUEEZE

WAL DATA_ s) 1T
VAIM BOUNCER MASKING TIMETABLE EMQ%IE%NJ
PG
FIGURATOR SHOW PLivgSQAL_SEC
PL AN S CYBERTEC

’ ISO 27001
CERTIFIED

Introduction

e people keep asking for “best practice”

e | have come to dislike that, because it often means “I don't want to understand
that and | don't want to think, just tell me what to do”

e it's much easier to name things that you should avoid

e hence this collection of “worst practices” from my experience as a consultant

Storing timestamps as strings / /
or numbers

Storing timestamps as strings

e it's a bad idea to store anything as string that isn't a string
e you'll end up with dates like 2024-02-30, 12.4.2024, 0000-00-00

Yes, you could check the values with a check constraint, but using the correct
data type checks it automatically.

® 2025-01-23 12:30:00+01 takes 23 bytes as string, but 8 bytes as
timestamp with time zone

e '2025-01-23 11:30:00+01' > '2025-01-23 03:30:00-08"' as string

Storing timestamps as offset from the epoch

e don't store timestamps in seconds since 1070-01-07 00:00:00 UTC
e it's fundamentally correct, but
o 1737631800 is harder to read than '2025-01-23 12:30:00+01".

o date arithmetic becomes more difficult, as you cannot use the timestamp
functions and operators directly (and complicated expressions in SQL
statements tend to lead to bad performance)

e there are exceptions to this rule, for example if all you ever need to calculate is
the difference in seconds

o but are you sure that the data will never be used for anything else?

G

About other data types

The same holds for other data types: always use the appropriate database type
e it's a bad idea to store anything as string that isn't a string

e store “valid from - valid to” as tstzrange

e use PostGIS for geographical coordinates

e use bytea for binary data, no encoded string

e use integer or bigint for integers, not numer-ic

e use bit varying for bitmaps

e use jsonb for JSON and xm1l for XML

./../../,

750 Al
//////fT

Using 4-byte integer for
auto-generated primary keys

The problem with auto-generated integer keys

e the maximum integeris 2°31-1=2147483647

e dont make the same mistake as the people who thought that 2°32 IP addresses
would be all mankind could ever need!

e sequence values get “lost” on rollback

e your table might grow bigger than you thought
(or you might delete and insert a lot)

e The canonical solution for the problem:

ALTER TABLE tab ALTER 1id TYPE bigint;

will rewrite the table = causes a long down time

Good practice: use bigint

e play it safe and always use bigint for auto-generated primary keys
e if the table grows large, you may need it
e if the table is small, wasting four bytes won't matter

e exception: small lookup tables that get referenced in big tables
= for those, choose integer or even smallint

o example: a table of the US states

Changing from integer to b1 gint without down time (1)

Add a new column and a trigger that fills it:

BEGIN;
ALTER TABLE tab ADD id2 bigint;

CREATE FUNCTION copy_id() RETURNS trigger
LANGUAGE plpgsql AS

SSBEGIN
NEW.id2 = NEW.1d;
RETURN NEW;

END;SS;

CREATE TRIGGER copy_id BEFORE INSERT OR UPDATE ON tab
FOR EACH ROW EXECUTE FUNCTION copy_tid();
COMMIT;

Changing from integer to b1 gint without down time (2)

Update the existing rows in batches:

UPDATE tab SET +id2 = 4d
WHERE id2 IS NULL
AND id < 1000000;

VACUUM tab;
UPDATE tab SET 1id2 = id
WHERE id2 IS NULL

AND id BETWEEN 1000001 AND 2000000;

VACUUM tab;

Changing from integer to b1 gint without down time (3)

Create a NOT NULL constraint and a unNIQuE index:

ALTER TABLE tab ADD CONSTRAINT tab_id2_notnull CHECK (id2 IS NOT NULL) NOT VALID;
ALTER TABLE tab VALIDATE CONSTRAINT tab_id2_notnull;

ALTER TABLE tab ALTER 1id2 SET NOT NULL;

ALTER TABLE tab DROP CONSTRAINT tab_id2_notnull;

CREATE UNIQUE INDEX CONCURRENTLY tab_pkey2 ON tab (1d2);

Changing from integer to b1 gint without down time (4)

Drop the old column and rename the new one, drop the trigger and create a new
primary key constraint:

BEGIN;

—-— works only if not referenced by a foreign key
ALTER TABLE tab DROP 1id;

DROP TRIGGER copy_id ON tab;
DROP FUNCTION copy_1id();
ALTER TABLE tab RENAME 1d2 TO 1d;

ALTER TABLE tab ADD PRIMARY KEY USING INDEX tab_pkey2;

COMMIT;

Define a comment column as //
varchar (255)

Define a comment column as varchar (255)

e someone will want to insert 300 characters

e the ALTER TABLE is cheap, but unnecessary

e if the application does not enforce a length limit, define the column as text
e text and varchar have the same implementation

e no performance penalty for text
on the contrary — you avoid the length check

Define all columns nullable

Define all columns nullable

e easy to do, because nullable is the default in SQL (more’s the pity!)

e experience tells: most nullable columns will eventually hold a NULL
= bad for data quality

e NULL makes queries complicated (harder for the optimizer)

WHERE col <> 42 OR col IS NULL -- or better:
WHERE col IS DISTINCT FROM 42

a JOIN b ON acol IS NOT DISTINCT FROM bcol -- cannot be indexed

e itis easytochange from noT NuLL to nullable, but not the other way around
(see the sample code from before!)

e in case of doubt, initially define columns as NOT NULL

Use large objects

What are large objects?

e special, non-standard API: To_create, lo_open, lowrite, loread, lo_close,
lo_unlink, ...

e data stored in the catalog table pg_largeobject
e each large object has an oid, which you can store in a table to refer to it
e the documentation says:

PostgreSQL also supports a storage system called “TOAST"[. . . | This makes the
large object facility partially obsolete.

G

Problems with large objects

e no referential integrity between the large object and the table row that uses it
o needs a trigger or regular vacuumlo run to maintain integrity

e before PostgreSQL v17, large objects get dumped and restored in a single
transaction during pg_upgrade

o if you have many large objects, upgrade may become impossible
= v17 improved that, but the upgrade is still slow

Recommendations for large objects

e there is really no benefit in using large objects, with these exceptions:
o you need objects exceeding 1GB (but you don't)
o you need to stream writes to the object

e don't touch large objects, except with a long pole — use bytea instead

e large objects are unfortunately still used a lot, because the PostgreSQL JDBC

driver has the standard methods getBLOB () and setBLOB () operate on large
objects

e if you define a column as @Lob or @Lob String in Hibernate, you'll end up with
large objects

G

Use an ENUM type for lists that / /
can change

Using ENUM types

e Created with
CREATE TYPE state AS ENUM ('Ohio', 'California', 'Alabama', ...);

e you can add a new state:
ALTER TYPE state ADD VALUE 'Ontario' AFTER 'Ohio';

(but before v17, the new value cannot be used in the same transaction)

® YOU canrename a state:

ALTER TYPE state RENAME VALUE 'California' TO 'Hot Oven';

ENUM: Problems and recommendation

e you cannot delete a state:

ALTER TYPE state DROP VALUE 'Alabama';
ERROR: dropping an enum value is not implemented

e when in doubt, use a lookup table

CREATE TABLE state (
id smallint PRIMARY KEY,
name text UNIQUE NOT NULL

)3

e use ENUM types only for lists that can never lose entries

Define a check constraint that
can become FALSE

The problem with check constraints that become
FALSE over time

e abad example:

ALTER TABLE tab
ADD CHECK (col > current_timestamp);

e but the condition that is initially TRUE becomes FALSE over time (is not
“retroactively deterministic” in SQL standard terms)

e once the condition has become FALSE, any later update of the row will lead to an
error — even if a different column is updated

e make sure your check constraints are retroactively deterministic (and remember
that word to impress others!)

G

Bad check constraints that reference other tables

e we want to make sure that a certain name exists in another table

e writing a subquery into a check constraint will fail, but we can cheat with a
function:

CREATE FUNCTION f(text) RETURNS boolean
RETURN EXISTS (SELECT FROM other WHERE upper (name) = upper($1l));

ALTER TABLE tab
ADD CHECK (f(name));

e this won't check the constraint if a row is deleted from other...

e if you dump and restore the database, the data for tab could be restored first,
which would lead to an error = cannot restore the backup

G

Lying about a function’'s immutability

® CREATE FUNCTION name(...) RETURNS ...
{ IMMUTABLE | STABLE | VOLATILE }
LANGUAGE ... AS ...

e IMMUTABLE promises that a function always will always return the same result
for the same arguments

e PostgreSQL performs some sanity checks, but in general, it believes your claim
e lying about IMMUTABLE can result in:

o corrupted indexes

o rows ending up in the wrong table partition

o incorrect values in generated columns

o in general, bad query results and data corruption

Example: corrupted index caused by bad IMMUTABLE function

-— depends on "timezone", not really IMMUTABLE
CREATE FUNCTION get_hour (timestamp with time zone) RETURNS 1integer
IMMUTABLE RETURN CAST (extract(hour FROM $1) AS -integer);

CREATE TABLE ts (t timestamp with time zone);
CREATE UNIQUE INDEX ON ts (get_hour(t));

SET timezone = 'UTC';

INSERT INTO ts VALUES ('2024-11-19 22:00:00 Europe/Vienna');
INSERT 0 1

SET timezone = 'Asia/Kolkata';

INSERT INTO ts VALUES ('2024-11-19 22:00:00 Europe/Vienna');
INSERT 0 1

Motivation for an Entity-Attribute-Value design

If you want to create entities on the fly, you might find the following design attractive:

CREATE TABLE objects (
objectid bigint PRIMARY KEY);

CREATE TABLE attstring (
objectid bigint REFERENCES objects ON DELETE CASCADE NOT NULL,
attname text NOT NULL,
attval text,
PRIMARY KEY (objectid, attname));

CREATE TABLE attint (
objectid bigint REFERENCES objects ON DELETE CASCADE NOT NULL,
attname text NOT NULL,
attval integer,
PRIMARY KEY (objectid, attname));

Queries and DML with an Entity-Attribute-Value design

o fetching an object with N attributes has to fetch N+1 rows
e inserting one object with N attributes leads to N+1 INSERTS

o deleting one object with N attributes leads to N+1 DELETES
= these operations will be much slower

e updating one attribute will be a single UPDATE
o that might actually be a bit faster
o but update of several columns will become several UPDATES

e on top of all that, the 24 bytes header for each table row waste considerable
storage space

G

A “simple” join with an Entity-Attribute-Value design

SELECT elal.attval AS person_name,
ela2.attval AS person_id,
e2al.attval AS address_street,
e2a2.attval AS address_city

FROM attint AS ela2

JOIN attstring AS elal

ON ela2.objectid = elal.objectid
LEFT JOIN attint AS e2a0

ON ela2.attval e2a0.attval
LEFT JOIN attstring AS e2al

ON e2a0.objectid = e2al.objectid
LEFT JOIN attstring AS e2a2

ON e2a0.objectid = e2a2.objectid

WHERE elal.attname = 'name'
AND ela2.attname = 'persnr'
AND e2a0@.attname = 'persnr'

AND e2al.attnhame = 'street'
AND e2a2.attname = 'city';

No comment!

Recommendations for alternatives

e don't use an Entity-Attribute-Value design
e justdon't
e itis actually much better to have the application run CREATE TABLE
e if you want to avoid creating objects, use jsonb
o common attributes (objectid) are normal table columns

o user-defined attributes become JSON attributes

Questions? /%

Link for feedback

Affiliations & Recognitions

is;i?:i

Open Alliance
Al— |— I AN C E gForgostgreSQL Education

G

Our partners at PGConf.EU

@) OpenSourceDB
d Your Trusted Data Partner

Scan for Updates

o0

[=]

Your Pathway to Verified PostgreSQL Skills oapg-edu.org

Open Alliance
For PostgreSQL Education

w L

L

PGDay Austria
returns in 2026

Scan for updates

GDAY
cAustria

™ Vienna Q 17 September 2026

