
Fast-path locking
improvements in PG18
Tomas Vondra <tomas@vondra.me> / https://vondra.me

pgconf.eu 2025, October 21-24, Riga

mailto:tomas@vondra.me
https://vondra.me

Agenda

● Why this improvement?

● A bit of history (PG 9.2)

● PG 18 improvements

● Trade-offs

● Challenges

● Future

pgconf.eu 2025, October 21-24, Riga

Why was I looking into this?

● end of 2023 (?)

● poor performance reported by a customer

● partitioned table (handful of partitions)

● upgraded to CPU with more cores
○ slower cores but ~2x the core count

○ expected better performance

● the opposite happened
○ much slower (with concurrency)

pgconf.eu 2025, October 21-24, Riga

example workload

pgbench -i -s 1 --partitions 10

ALTER TABLE pgbench_accounts ADD COLUMN aid_new INT;

UPDATE pgbench_accounts SET aid_new = aid;

CREATE INDEX ON pgbench_accounts (aid_new);

VACUUM FULL pgbench_accounts;

\set aid random(1, 100000 * :scale)

SELECT * FROM pgbench_accounts pa

 JOIN pgbench_branches pb ON (pa.bid = pb.bid)

 WHERE pa.aid_new = :aid

pgconf.eu 2025, October 21-24, Riga

EXPLAIN
 QUERY PLAN

 Hash Join (cost=1.52..34.41 rows=10 width=465)

 Hash Cond: (pa.bid = pb.bid)

 -> Append (cost=0.29..33.15 rows=10 width=101)

 -> Index Scan using pgbench_accounts_1_aid_parent_idx on pgbench_accounts_1 pa_1 (cost=0.29..3.31 rows=1 width=101)

 Index Cond: (aid_new = 3489734)

 -> Index Scan using pgbench_accounts_2_aid_parent_idx on pgbench_accounts_2 pa_2 (cost=0.29..3.31 rows=1 width=101)

 Index Cond: (aid_new = 3489734)

 -> Index Scan using pgbench_accounts_3_aid_parent_idx on pgbench_accounts_3 pa_3 (cost=0.29..3.31 rows=1 width=101)

 Index Cond: (aid_new = 3489734)

 -> Index Scan using pgbench_accounts_4_aid_parent_idx on pgbench_accounts_4 pa_4 (cost=0.29..3.31 rows=1 width=101)

 Index Cond: (aid_new = 3489734)

 -> ...

 -> Hash (cost=1.10..1.10 rows=10 width=364)

 -> Seq Scan on pgbench_branches pb (cost=0.00..1.10 rows=10 width=364)

pgconf.eu 2025, October 21-24, Riga

pgconf.eu 2025, October 21-24, Riga

What could be causing this?

● Clearly a concurrency issue.

● Something is contended, but what?

● Let's jump to "obvious" conclusions!

/* lwlock.h */

#define LOG2_NUM_LOCK_PARTITIONS 4

#define NUM_LOCK_PARTITIONS (1 << LOG2_NUM_LOCK_PARTITIONS)

 16

pgconf.eu 2025, October 21-24, Riga

What could be causing this?

● Clearly a concurrency issue.

● Something is contended, but what?

● Let's jump to "obvious" conclusions!

/* lwlock.h */

#define LOG2_NUM_LOCK_PARTITIONS 4

#define NUM_LOCK_PARTITIONS (1 << LOG2_NUM_LOCK_PARTITIONS)

 16

pgconf.eu 2025, October 21-24, Riga

This is not it. Increasing to 64 makes no difference.

● Could be power management / thermal throttling?
○ seen that before, was "fun" to investigate (invisible from a VM)

● Worse with SMT / hyper threading.
○ kinda sad to run with cores disabled

● Could it be malloc contention?
○ maybe a little bit, but a separate issue

Time for crazy ideas ...

pgconf.eu 2025, October 21-24, Riga

pgconf.eu 2025, October 21-24, Riga

pgbench -n -f select.sql \
 -M prepared -c 64 -j 64 test
20k tps

● shared lock table
● partitioned (N=16)
● but still expensive

locking

pgconf.eu 2025, October 21-24, Riga

LOCK

PROCLOCK

max_connections *
max_locks_per_transaction

connection

Fast-path locking (9.2)

https://www.postgresql.org/docs/current/explicit-locking.html

https://www.postgresql.org/docs/current/explicit-locking.html

● shared lock table
● local "fast-path" buffer
● still shared memory!

fast-path locking

pgconf.eu 2025, October 21-24, Riga

LOCK

PROCLOCK

max_connections *
max_locks_per_transaction

fast-path
(PGPROC)

16

connection

Fast-path locking (9.2)

● fast-path array in PGPROC
○ "local cache" - the point is to not use shared hash table often

○ still in shared memory, but has a separate lock (per process)

● fast-path protocol (lock.c, LockAcquireExtended)
○ fast-path if no one holds a conflicting lock + there's space in PGPROC

○ obtaining conflicting lock -> transfer locks to shared hash table

● capacity for 16 OIDs - that's not very many
○ tables + indexes + ...

○ trivial to hit the limit, especially with partitioning

pgconf.eu 2025, October 21-24, Riga

https://vondra.me/pdf/performance-archaeology-pgconfeu-2024.pdf

https://vondra.me/pdf/performance-archaeology-pgconfeu-2024.pdf

Making it larger ...

● also, make it configurable
○ so that people can adjust that by a GUC

● can't keep it in PGPROC anymore
○ a "struct" needs to be of a fixed-size

○ still has to be shared memory, but as a separate "chunk"

● fast-path locking protocol
○ no change [src/backend/storage/lmgr/README]

But what should be the data structure?

pgconf.eu 2025, October 21-24, Riga

https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README

how it used to work

● linear search, 16 slots
● good: simple, fast, cheap, efficient
● bad: limited capacity

OID

pgconf.eu 2025, October 21-24, Riga

how to improve?

● increase the number of slots + linear search
● good: trivial extension (but naive)
● bad: expensive linear search (worst case)

pgconf.eu 2025, October 21-24, Riga

OID

how to improve?

● use a traditional hash table
● good: well understood
● bad: not great with high load factor (can't resize!)
● bad: long runs or random access not great (even for RAM)

pgconf.eu 2025, October 21-24, Riga

hash(OID)

16-way set-associative cache

● clone the original approach + hash partition

https://en.algorithmica.org/hpc/cpu-cache/associativity/

https://developer.arm.com/documentation/den0013/d/Caches/Cache-architecture/Set-associative-caches

pgconf.eu 2025, October 21-24, Riga

hash(OID)

OID

https://en.algorithmica.org/hpc/cpu-cache/associativity/
https://developer.arm.com/documentation/den0013/d/Caches/Cache-architecture/Set-associative-caches

Data structure

● array + linear search
○ worked great for 16 items, linear search wins here

○ probably not beyond 32/64 items, we're aiming for 1024+

● hash table (open addressing)
○ we'd need to limit load factor (e.g. 75%) to keep it fast

○ random access is not great (cacheline 64B)

● 16-way set-associative cache
○ hash table of arrays

○ ingenious product of my laziness

pgconf.eu 2025, October 21-24, Riga

16-way set-associative cache

● simple concept
○ hash + array

● nice sequential access
○ regular hash tables are much more random

○ not great, even for RAM

○ cache friendly (cachelines)

● no problem with limited capacity
○ can always promote to shared lock table

pgconf.eu 2025, October 21-24, Riga

pgbench -n -f select.sql \
 -M prepared -c 64 -j 64 test
20k tps

pgbench -n -f select.sql \
 -M prepared -c 64 -j 64 test
200k tps

3x

5x

pgconf.eu 2025, October 21-24, Riga

3x

8x

pgconf.eu 2025, October 21-24, Riga

Trade-offs

● tied to max_locks_per_transaction
○ ease of tuning vs. configurability (too many GUCs)

○ best idea about how many locks to expect

○ per-backend limit (max_locks_per_transaction was not that)

● what's a good value?
○ no "optimal" value, depends on workload

○ fast-path locks are cheaper (smaller) than shared lock table entries

● max_locks_per_transaction = 64
○ sensible, maybe not ideal for "unbalanced" clusters?

○ should be enough for ~10 tables

pgconf.eu 2025, October 21-24, Riga

What's next?

pgconf.eu 2025, October 21-24, Riga

Future

● we need better monitoring
○ how do you pick the max_locks_per_transaction value?

● pg_locks is not great for this
○ snapshot of current state

● probably some cumulative counters
○ number of locks

○ number of fast-path overflows

○ can we track "peak lock count"?

pgconf.eu 2025, October 21-24, Riga

Future

● could we use the same idea elsewhere?
○ pins for "hot" buffers - maybe a "fast-path pinning"?
○ Problem #4 - Buffer Lock Contention (https://youtu.be/V75KpACdl6E?t=2120)

● consider hotness
○ now first come, first served
○ Maybe consider how often an OID is locked? Has to be cheap.

● NUMA effects
○ maybe should be NUMA partitioned
○ same NUMA node as PGPROC?

● make shared lock table cheaper
○ lock less often / keep locks, maybe smaller entries, ...

pgconf.eu 2025, October 21-24, Riga

https://youtu.be/V75KpACdl6E?t=2120

Other bottlenecks

● glibc malloc vs. concurrency
○ btbeginscan() allocates ~30kB, can't be cached, always malloc

○ MALLOC_TOP_PAD_ (see mallopt)

○ two "connected" bottlenecks - have to address both

○ jemalloc/tmalloc do not have this issue

● join order planning
○ OLTP starjoin

○ other bottleneck swamping the results

● multiple bottlenecks can be hit simultaneously
○ and compose in non-linear way (50% vs. 10x speedup)

pgconf.eu 2025, October 21-24, Riga

Shout-out

● Robert Haas
○ wrote the fast-path locking in 9.2

○ it was extremely easy to build on his code

○ first PoC patch in ~ ½ day, worked on 1st try

● Jakub Wartak
○ support engineer / hacker in EDB investigating this

○ provided a lot of great insights and expertise

○ super-fun collaboration

pgconf.eu 2025, October 21-24, Riga

feedback

pgconf.eu 2025, October 21-24, Riga

pgconf.eu 2025, October 21-24, Riga

Prague events

Prague PostgreSQL
Developer Day 2026

January 27-28

CfP (closes November 14)
https://cfp.p2d2.cz/2026/

looking for sponsors & partners

Prague PostgreSQL
Meetup

https://www.meetup.com/prague-p
ostgresql-meetup

https://cfp.p2d2.cz/2026/
https://www.meetup.com/prague-postgresql-meetup
https://www.meetup.com/prague-postgresql-meetup

Tomas Vondra

● Postgres engineer @ Microsoft

● https://vondra.me

● vondratomas@microsoft.com

● tomas@vondra.me

● office hours

● ...

pgconf.eu 2025, October 21-24, Riga

https://vondra.me
mailto:vondratomas@microsoft.com
mailto:tomas@vondra.me

Q & A

pgconf.eu 2025, October 21-24, Riga

