Fast-path locking
improvements in PG18

Tomas Vondra <tomas@vondra.me> / https://vondra.me
pgconf.eu 2025, October 21-24, Riga

B Microsoft

mailto:tomas@vondra.me
https://vondra.me

Agenda

Why this improvement?
A bit of history (PG 9.2)
PG 18 improvements
Trade-offs

Challenges

Future

=" Microsoft

BN i crosoft
Why was | looking into this? m= Microso

e end of 2023 (?)
e poor performance reported by a customer
e partitioned table (handful of partitions)

e upgraded to CPU with more cores

o slower cores but ~2x the core count

o expected better performance
e the opposite happened

o much slower (with concurrency)

S® Microsoft
example workload “

pgbench -i -s 1 --partitions 10

ALTER TABLE pgbench_accounts ADD COLUMN aid_new INT;
UPDATE pgbench_accounts SET aid_new = aid;

CREATE INDEX ON pgbench_accounts (aid_new);

VACUUM FULL pgbench_accounts;

\set aid random(1l, 100000 * :scale)
SELECT * FROM pgbench_accounts pa

JOIN pgbench_branches pb ON (pa.bid = pb.bid)
WHERE pa.aid new = :aid

=Pl AN =" Microsoft

QUERY PLAN
Hash Join (cost=1.52..34.41 rows=10 width=465)
Hash Cond: (pa.bid = pb.bid)
-> Append (cost=0.29..33.15 rows=10 width=101)
-> Index Scan using pgbench_accounts_1 aid_parent_idx on pgbench_accounts_1 pa_1 (cost=0.29..3.31 rows=1 width=101)
Index Cond: (aid_new = 3489734)
-> Index Scan using pgbench_accounts_2_aid_parent_idx on pgbench_accounts_2 pa_2 (cost=0.29..3.31 rows=1 width=101)
Index Cond: (aid_new = 3489734)
-> Index Scan using pgbench_accounts_3 aid_parent_idx on pgbench_accounts_3 pa_3 (cost=0.29..3.31 rows=1 width=101)
Index Cond: (aid_new = 3489734)
-> Index Scan using pgbench_accounts_4_aid_parent_idx on pgbench_accounts_4 pa_4 (cost=0.29..3.31 rows=1 width=101)
Index Cond: (aid_new = 3489734)
> ..
-> Hash (cost=1.10..1.10 rows=10 width=364)
-> Seq Scan on pgbench_branches pb (cost=0.00..1.10 rows=10 width=364)

| - =" Microsoft
throughput with partitions

AMD EPYC 9V74 80-Core Processor
== 10/simple == 10/prepared == 100/simple == 100/ prepared

250000

200000
m
£ 150000
5 :
o .
< =
2 100000
2 .
S

50000 -
0 _‘_'-:-:"""
50 75 100 125 150
clients

pgconf.eu 2025, October 21-24, Riga

BN \icrosoft
What could be causing this? mi ViCroso

e Clearly a concurrency issue.
e Something is contended, but what?

e Let'sjump to "obvious" conclusions!

/* lwlock.h */

#tdefine LOG2 _NUM LOCK PARTITIONS 4

#tdefine NUM_LOCK PARTITIONS (1 << LOGZ_NUM_LOCK_PARTITIONS)
16

BN \icrosoft
What could be causing this? mi ViCroso

e Clearly a concurrency issue.
e Something is contended, but what?

e Let'sjump to "obvious" conclusions!

/* lwlock.h */

#tdefine LOG2 _NUM LOCK PARTITIONS 4

#tdefine NUM_LOCK PARTITIONS (1 << LOGZ_NUM_LOCK_PARTITIONS)
16

This is not it. Increasing to 64 makes no difference.

HE
_ _ Microsoft
Time for crazy ideas ... “

e Could be power management / thermal throttling?

o seen that before, was "fun" to investigate (invisible from a VM)

e Worse with SMT / hyper threading.

o kinda sad to run with cores disabled

e Could it be malloc contention?

o maybe a little bit, but a separate issue

Samples: 20K of event 'task-clock:ppp', Event count (approx.): 5181500000

Children Self Command Shared Object Symbol

+ 99.99% 0.00% postgres [unknown] [.] oxffffffffffffffff .. Microsoft
+ 99.98% 0.00% postgres postgres [.] ServerLoop .
+ 99.98% 0.00% postgres postgres [.]1 BackendStartup (inlined)

+ 99.98% 0.00% postgres postgres [.] postmaster_child_launch

+ 99.98% 0.00% postgres postgres [.]1 BackendMain

+ 299.98% 0.09% postgres postgres [.] PostgresMain

+ 44.91% 0.28% postgres postgres [.] LockRelationOid

+ 43.17% 1.45% postgres postgres [.] LockAcquireExtended

+ 41.73% 0.03% postgres postgres [.] PortalStart

+ 41.60% 0.03% postgres postgres [.] standard_ExecutorStart

+ 41.50% 0.22% postgres postgres [.]1 ExecInitNode

+ 41.49% 0.06% postgres postgres [.] ExecInitAgg

+ 41.16% 0.11% postgres postgres [.]1 ExecInitAppend

+ 40.77% 0.41% postgres postgres [.] ExecInitIndexOnlyScan

+ 28.50% 0.55% postgres postgres [.] relation_open

+ 26.86% 0.01% postgres postgres [.] index_open

+ 24.69% 0.00% postgres [kernel.kallsyms] [k] entry_SYSCALL_64_after_hwframe
+ 24 .58% 1.26% postgres [kernel.kallsyms] [k] do_syscall_64

+ 22.42% 0.10% postgres [kernel.kallsyms] [k] x64_sys_call

+ 20.67% 0.12% postgres [kernel.kallsyms] [k] __x64_sys_futex

+ 20.52% 0.04% postgres [kernel.kallsyms] [k] do_futex

+ 20.36% 0.01% postgres postgres [.]1 GetCachedPlan

+ 20.31% 0.00% postgres postgres [.]1 CheckCachedPlan (inlined)

+ 20.31% 0.14% postgres postgres [.] AcquireExecutorlLocks

+ 20.07% 8.12% postgres postgres [.] LWLockAcquire

+ 18.25% 16.02% postgres postgres [.1 hash_search_with_hash_value

+ 17.68% 3.82% postgres postgres [.]1 LWLockRelease

+ 17.67% 0.00% postgres postgres [.1 finish_xact_command (inlined)
+ 17.67% 0.01% postgres postgres [.] CommitTransactionCommand

+ 17.66% 0.05% postgres postgres [.] CommitTransaction

s o o A - L m mmo/ nAactAnvAe nAartAnvAc N 1 Dav+AaTDiin

Reset Search

Flame Graph

pgbench -n -f select.sql \

64 test

-]

-M prepared -c 64

20k tps

-t_-.m i

ext_tid

B0 index_getn

lll'l'_
¢
o
G !
]
=
===E8 N |
el ﬂu 4
=—aills
——==m e EEmw

[BE&) ResourceOwnerReleasel

Por.

standard_ExecutorStart

standard_ExecutorRun
PortalRunSelect

EOCKREIEHOTOI ecutePlan

=1
[}
—
=
[}
g
[
Q
<
=
5}
=1
o

BackendStartup

sk B "
L
postgres
R ————

Matched: 62.9%

| == Microsoft
locking

e shared lock table
e partitioned (N=16)
e Dut still expensive

connection

max_connections *
max_locks per_transaction

W\ £
Fast-path locking (9.2) mm Microso

Table 13.2. Conflicting Lock Modes

Existing Lock Mode

Requested Lock Mode ACCESS SHARE ROW SHARE ROW EXCL. SHARE UPDATE EXCL. SHARE SHARE ROW EXCL. EXCL. ACCESS EXCL.

ACCESS SHARE X
ROW SHARE X X
ROW EXCL. X X X X
SHARE UPDATE EXCL. X X X X X
SHARE X X X X X
SHARE ROW EXCL. X X X X X X
EXCL. X X X X X X X
ACCESS EXCL. X X X X X X X X

https://www.postgresql.org/docs/current/explicit-locking.html

https://www.postgresql.org/docs/current/explicit-locking.html

fast-path locking

shared lock table
local "fast-path" buffer
still shared memory!

connection

fast-path
(PGPROC)

16

== Microsoft

max_connections *
max_locks_per_transaction

W\ £
Fast-path locking (9.2) mm Microso

e fast-path array in PGPROC

o "local cache" - the point is to not use shared hash table often

o still in shared memory, but has a separate lock (per process)
e fast-path protocol (lock.c, LockAcquireExtended)

o fast-path if no one holds a conflicting lock + there's space in PGPROC

o obtaining conflicting lock -> transfer locks to shared hash table
e capacity for 16 OIDs - that's not very many

o tables + indexes + ...

o trivial to hit the limit, especially with partitioning

HE p\/;
OLTP starjoin / -M prepared I Microsoft

400000

300000

200000

100000

8 82 83 84 9 91 92 93 94 95 096 10 11 12 13 14 15 16 17 18

https://vondra.me/pdf/performance-archaeology-pgconfeu-2024.pdf

https://vondra.me/pdf/performance-archaeology-pgconfeu-2024.pdf

m. £
Making it larger ... mm Microso

e also, make it configurable
o so that people can adjust that by a GUC
e can't keep it in PGPROC anymore

o a "struct" needs to be of a fixed-size

o still has to be shared memory, but as a separate "chunk"
e fast-path locking protocol

o no change [src/backend/storage/Imgr/README]

But what should be the data structure?

https://github.com/postgres/postgres/blob/master/src/backend/storage/lmgr/README

m. £t
how it used to work mm VIICroso

e linear search, 16 slots
e good: simple, fast, cheap, efficient
e bad: limited capacity

OID

E
_ Microsoft
how to improve? -

e increase the number of slots + linear search
e good: trivial extension (but naive)
e bad: expensive linear search (worst case)

OID

pgconf.eu 2025, October 21-24, Riga

E
_ Microsoft
how to improve? -

use a traditional hash table

good: well understood

bad: not great with high load factor (can't resize!)

bad: long runs or random access not great (even for RAM)

hash(OID)
|

y
LT T

pgconf.eu 2025, October 21-24, Riga

mE
o Microsoft
16-way set-associative cache -

e clone the original approach + hash partition

hash(OID)

I
I A

OID

https://en.algorithmica.org/hpc/cpu-cache/associativity/

https://developer.arm.com/documentation/den0013/d/Caches/Cache-architecture/Set-associative-caches

pgconf.eu 2025, October 21-24, Riga

https://en.algorithmica.org/hpc/cpu-cache/associativity/
https://developer.arm.com/documentation/den0013/d/Caches/Cache-architecture/Set-associative-caches

HE
Microsoft
Data structure .

e array + linear search

o worked great for 16 items, linear search wins here

o probably not beyond 32/64 items, we're aiming for 1024+
e hash table (open addressing)

o we'd need to limit load factor (e.g. 75%) to keep it fast

o random access is not great (cacheline 64B)
e 16-way set-associative cache

o hash table of arrays

o ingenious product of my laziness

mE
o Microsoft
16-way set-associative cache “

e simple concept
o hash + array
e nice sequential access

o regular hash tables are much more random
o not great, even for RAM

o cache friendly (cachelines)
e no problem with limited capacity

o can always promote to shared lock table

Reset Search

Flame Graph

pgbench -n -f select.sql \

64 test

-]

-M prepared -c 64

20k tps

-t_-.m i

ext_tid

B0 index_getn

lll'l'_
¢
o
G !
]
=
===E8 N |
el ﬂu 4
=—aills
——==m e EEmw

[BE&) ResourceOwnerReleasel

Por.

standard_ExecutorStart

standard_ExecutorRun
PortalRunSelect

EOCKREIEHOTOI ecutePlan

=1
[}
—
=
[}
g
[
Q
<
=
5}
=1
o

BackendStartup

sk B "
L
postgres
R ————

Matched: 62.9%

Reset Search

Flame Graph

pgbench -n -f select.sqgl \

64 test

-]

-C 64

-M prepared

Matched: 26.1%

standard_ExecutorStart

Check. | PortalRunSelect

BackendStartup

10 partitions, max_locks_per_transaction = 64 == Microsoft
AMD EPYC 9V74 80-Core Processor

== 17 /simple == 18/simple == 17/prepared == 18/ prepared

1500000
. 1000000
w
e
2 5x
< e e
o] et
s e
B | e
£ 500000 X

125 150

clients pgconf.eu 2025, October 21-24, Riga

100 partitions, max_locks_per_transaction = 1024 == Microsoft
AMD EPYC 9V74 80-Core Processor
== 17 /simple == 18/simple == 17/prepared == 18/prepared

250000

200000 —————————————————————————————————— e
gm 150000 e
E | e
£ 8x
2 100000
°]
S

50000 3X

50 75 100 125 150

clients pgconf.eu 2025, October 21-24, Riga

HE Mi ft
Trade-offs mi MICTOs0

e tied to max_locks per transaction

o ease of tuning vs. configurability (too many GUCs)

o bestidea about how many locks to expect

o per-backend limit (max_locks per_transaction was not that)
e what's a good value?

o no "optimal" value, depends on workload

o fast-path locks are cheaper (smaller) than shared lock table entries
e max_locks per transaction = 64

o sensible, maybe not ideal for "unbalanced" clusters?
o should be enough for ~10 tables

== Microsoft

What's next?

HE p\a:
Microsoft
Future =

e we need better monitoring

o how do you pick the max_locks per_transaction value?
e pg_locks is not great for this

o snapshot of current state
e probably some cumulative counters

o number of locks
o number of fast-path overflows

o can we track "peak lock count"?

HE
Microsoft
Future .

e could we use the same idea elsewhere?
o pins for "hot" buffers - maybe a "fast-path pinning"?
o Problem #4 - Buffer Lock Contention (https://youtu.be/V75KpACdIGE?t=2120)

e consider hotness

o now first come, first served

o Maybe consider how often an OID is locked? Has to be cheap.

o NUMA effects

o maybe should be NUMA partitioned
o same NUMA node as PGPROC?

e make shared lock table cheaper

o lock less often / keep locks, maybe smaller entries, ...

https://youtu.be/V75KpACdl6E?t=2120

-. M' ft
Other bottlenecks mm Microso

e (glibc malloc vs. concurrency

o btbeginscan() allocates ~30kB, can't be cached, always malloc
o MALLOC _TOP_PAD _(see mallopt)
o two "connected" bottlenecks - have to address both
o jemalloc/tmalloc do not have this issue
e join order planning
o OLTP starjoin
o other bottleneck swamping the results

e multiple bottlenecks can be hit simultaneously

o and compose in non-linear way (50% vs. 10x speedup)

mE ft
Shout-out mn Microso

e Robert Haas

o wrote the fast-path locking in 9.2
o it was extremely easy to build on his code

o first PoC patch in ~ 2 day, worked on 1st try

e Jakub Wartak

o support engineer / hacker in EDB investigating this
o provided a lot of great insights and expertise

o super-fun collaboration

Microsoft

feedback

Prague events

Prague PostgreSQL
Developer Day 2026

January 27-28

CfP (closes November 14)
https://cfp.p2d2.cz/2026/

looking for sponsors & partners

B= Microsoft

Prague PostgreSQL
Meetup

https://www.meetup.com/praque-p

ostgresqal-meetup

https://cfp.p2d2.cz/2026/
https://www.meetup.com/prague-postgresql-meetup
https://www.meetup.com/prague-postgresql-meetup

HE
Microsoft
Tomas Vondra .

e Postgres engineer @ Microsoft

e https://vondra.me

e vondratomas@microsoft.com

e tomas@vondra.me

e oOffice hours

https://vondra.me
mailto:vondratomas@microsoft.com
mailto:tomas@vondra.me

== Microsoft

Q&A

