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Agenda

WHAT IS FREEZING AND 
WHY DO WE NEED IT

WHEN DO WE FREEZE 
NOW

WHY IS IT HARD TO DO 
BETTER

WHAT DID WE DO IN 18



Multi-Version Concurrency Control

xmin xmax valuestatus

Not visible, Live (running)

Visible, Dead

Visible, Live; Not visible, Dead

20

22

300

50

100

X

100

X

700

X

R

C

C

C

C

lorem

ipsum

amet

dolor

sit
Visible, Live

Check XIP

xmin: 200

xmax: 600

xmin xmaxxip[]

not 

visiblevisible in progress



Wraparound
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Wraparound Read-only database



Freezing
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How do we know if our database is in danger?
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Per table: pg_class.relfrozenxid
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Who should freeze and when?

Emits 
WAL

Dirties 
pages



Vacuum well-positioned to freeze

Encounters 
tuples

Dirties 
pages Emits WAL



Freezing inconsistent with vacuum’s 
mandate

Triggered by 
insert and 

modification 
thresholds

Reads modified 
pages

Skips all-visible 
pages



Visibility map

TABLE VM



Forcing vacuum of all-visible pages

relfrozenxid < autovacuum_freeze_max_age

triggers anti-wraparound vacuum

- usually aggressive (controlled by vacuum_freeze_table_age)
- scans all all-visible pages



Freezing Timeline

autovacuum_freeze_max_age

vacuum_freeze_min_age

failsafe

2 billion200 million50 million 1.6 billion



Aggressive Vacuum Overhead

I/O impact 
disrupts 

foreground 
workloads

Can last through 
failsafe



I/O Amplification Waiting to Freeze

Evict inserted 
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SELECT * query Evict hinted 
data

Normal 
vacuum

Set page vis 
hint and VM

Vacuum 
strategy evict

Aggressive 
vacuum

Freeze tuples 
and update VM

Vacuum 
strategy evict

Set 
hints

C
PD_ALL_VISIBLE

Read

B1

VM

B1

Write

B1B1B1

Read

B1

Write

Write

B1

VM

B1B1

Read

B1

Write



When should we freeze?



Ideal Time To Freeze
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What can be eliminated
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V AgV
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Preemptive Freeze Algorithm 
Possibilities



Freeze all visible tuples on every vacuum?
(Ignore vacuum_freeze_min_age)
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Freeze all visible tuples on every vacuum?
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Diverse access patterns

Insert-only table Hotly updated table



What about using # updates/deletes

Insert-only table Hotly updated table

pg_stat_all_tables.n_tup_upd, n_tup_del



What about using # updates/deletes

Insert-only table Hotly updated table

pg_stat_all_tables.n_tup_upd, n_tup_del



What about freezing every page once
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What about freezing every page once

W
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load 
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FPIs for every page



Need a model that includes time



Quiescence theory

Evicted



Will the page be modified again?

Evicted



VacuumUpdate a tuple Update a tuple

Unmodified duration

2323588
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How likely is a page to stay unmodified?

Unmodified Durations of 
Vacuumed Pages
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Will the page be modified again?

Evicted



How often can you tolerate useless freezing?

A = Autovacuum
A A A A A



Is the page young enough to stay 
unmodified for target freeze 
duration?



How likely is our specific page to stay 
unmodified for target freeze duration?

Unmodified Durations of 
Vacuumed Pages
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Results: Consistent freezing

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation



Results: All-visible Debt Low and Stable

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation

All-visible but not 
all-frozen pages



Many short autovacuums

Aggressive 
vacuum



Lower Total Time Spent Vacuuming

Aggressive 
vacuum



Insert-only workloads, data not modified



Missing data for pages not modified again
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Need to add LSNs of all-visible pages
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Building a distribution was complicated



High code complexity

• Low reusability

Lots of code

• Didn’t work with failover or crash

Major existing infrastructure issues



Lessons Learned

• Sometimes attempts to simplify fail
• Define the problem better sooner



New Direction
What Went into Postgres 18



Long time between vacuuming and aggressive 
vacuuming B1
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Other inserts triggered normal vacuums of 
new pages
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What if we scan and freeze B1 sooner?
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Switch framing to all-visible pages scanning

A = Autovacuum
A A A A A A A AA A



Adaptively eager scan all-visible pages

• All-visible pages more likely to need freezing
• Stop freezing if it isn’t working

• Only requires tracking information in one vacuum



Amortize the aggressive vacuum
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Adaptively eager scan all-visible pages

• Cap eager scanning at a percentage of all-visible pages
• Suspend eager scanning if not successfully freezing pages



GUC and table storage option

• Eagerly scan and freeze up to 20% of the table
• No more eager scanning for remainder of vacuum

• vacuum_max_eager_freeze_failure_rate

• Eagerly scan and fail to freeze 3% of 4096 block size region (32 MB)
• Suspend eager scanning until next region



Future Directions
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Conclusion

ADAPTIVE ALGORITHMS 
ARE POSSIBLE IN 

POSTGRES

BUT ARE VERY HARD BUT WE SHOULD THINK 
MORE ABOUT THEM

THANKS TO
ANDRES FREUND AND

ROBERT HAAS



Get your FREE socks @ Microsoft booth

Got 3 minutes? 
We’d love your input 
on some of our
Postgres work
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