
Improved Freezing
In Vacuum
Melanie Plageman

Microsoft

Agenda

WHAT IS FREEZING AND
WHY DO WE NEED IT

WHEN DO WE FREEZE
NOW

WHY IS IT HARD TO DO
BETTER

WHAT DID WE DO IN 18

Multi-Version Concurrency Control

xmin xmax valuestatus

Not visible, Live (running)

Visible, Dead

Visible, Live; Not visible, Dead

20

22

300

50

100

X

100

X

700

X

R

C

C

C

C

lorem

ipsum

amet

dolor

sit
Visible, Live

Check XIP

xmin: 200

xmax: 600

xmin xmaxxip[]

not

visiblevisible in progress

Wraparound

Current XID

2 billion
2 billion

Wraparound

Tuple

Wraparound

Tuple

Wraparound Read-only database

Freezing

xmin xmax valuestatus

Not visible, Live (running)

Visible, Dead

Visible, Live; Not visible, Dead

20

22

300

50

100

X

100

X

700

X

R

C

C

C

C

lorem

ipsum

amet

dolor

sit
Visible, Live

Check XIP

How do we know if our database is in danger?

xmin xmax valuestatus

20 loremRX

22 100 C ipsum

300 X C amet

50 700 C dolor

100 X C sit

Query XID: 1,900,000,000

X
relfrozenxid == 10

relfrozenxid ==

1,000,000,000

relfrozenxid ==

1,200,000,000

Per table: pg_class.relfrozenxid

xmin xmax valuestatus

20 loremRX

22 100 C ipsum

300 X C amet

50 700 C dolor

100 X C sit

Query XID: 1,900,000,000

X
relfrozenxid == 10

relfrozenxid ==

1,000,000,000

relfrozenxid ==

1,200,000,000

Who should freeze and when?

Emits
WAL

Dirties
pages

Vacuum well-positioned to freeze

Encounters
tuples

Dirties
pages Emits WAL

Freezing inconsistent with vacuum’s
mandate

Triggered by
insert and

modification
thresholds

Reads modified
pages

Skips all-visible
pages

Visibility map

TABLE VM

Forcing vacuum of all-visible pages

relfrozenxid < autovacuum_freeze_max_age

triggers anti-wraparound vacuum

- usually aggressive (controlled by vacuum_freeze_table_age)
- scans all all-visible pages

Freezing Timeline

autovacuum_freeze_max_age

vacuum_freeze_min_age

failsafe

2 billion200 million50 million 1.6 billion

Aggressive Vacuum Overhead

I/O impact
disrupts

foreground
workloads

Can last through
failsafe

I/O Amplification Waiting to Freeze

Evict inserted
data

SELECT * query Evict hinted
data

Normal
vacuum

Set page vis
hint and VM

Vacuum
strategy evict

Aggressive
vacuum

Freeze tuples
and update VM

Vacuum
strategy evict

Set
hints

C
PD_ALL_VISIBLE

Read

B1

VM

B1

Write

B1B1B1

Read

B1

Write

Write

B1

VM

B1B1

Read

B1

Write

When should we freeze?

Ideal Time To Freeze

Evict inserted
data

Evict hinted
data

Normal
vacuum

Set page vis
hint and VM

Vacuum
strategy evict

Aggressive
vacuum

Freeze tuples
and update VM

Vacuum
strategy evict

Set
hints

C
PD_ALL_VISIBLE

Read

B1

VM

B1

Write

B1B1B1

Read

B1

Write

Write

B1

VM

B1B1

Read

B1

Write

Freeze Freeze Freeze

SELECT * query

What can be eliminated

W R W R W R WX X

V AgV

freeze

Preemptive Freeze Algorithm
Possibilities

Freeze all visible tuples on every vacuum?
(Ignore vacuum_freeze_min_age)

W R W R W

V

freeze

Freeze all visible tuples on every vacuum?

W R W R W

V

Transactionally
dirtying buffer

V V V
Transactionally
dirtying buffer

Transactionally
dirtying buffer

freeze freeze freezefreeze

Diverse access patterns

Insert-only table Hotly updated table

What about using # updates/deletes

Insert-only table Hotly updated table

pg_stat_all_tables.n_tup_upd, n_tup_del

What about using # updates/deletes

Insert-only table Hotly updated table

pg_stat_all_tables.n_tup_upd, n_tup_del

What about freezing every page once

W R W R W

V

Transactionally
dirtying buffer

V V V
Transactionally
dirtying buffer

Transactionally
dirtying buffer

freeze

W R W R W

V

freeze

Hotly
updated
table

Insert-
only
table

What about freezing every page once

W

V

Bulk
load
data

V

Freeze

ETL
workload R W W

Update
all data

R W

Extra WAL and potentially
FPIs for every page

Need a model that includes time

Quiescence theory

Evicted

Will the page be modified again?

Evicted

VacuumUpdate a tuple Update a tuple

Unmodified duration

2323588

LSN

How likely is a page to stay unmodified?

Unmodified Durations of
Vacuumed Pages

0

Pr
ob

ab
ili

ty

Current unmodified
duration

1 hour

2323588

LSN

Will the page be modified again?

Evicted

How often can you tolerate useless freezing?

A = Autovacuum
A A A A A

Is the page young enough to stay
unmodified for target freeze
duration?

How likely is our specific page to stay
unmodified for target freeze duration?

Unmodified Durations of
Vacuumed Pages

0

Pr
ob

ab
ili

ty

Current unmodified
duration

Target freeze duration

1 hour 1 hour, 40 minutes

2323588

LSN

Results: Consistent freezing

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation

Results: All-visible Debt Low and Stable

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation

All-visible but not
all-frozen pages

Many short autovacuums

Aggressive
vacuum

Lower Total Time Spent Vacuuming

Aggressive
vacuum

Insert-only workloads, data not modified

Missing data for pages not modified again

Unmodified Durations of
Vacuumed Pages

0 100000

Fr
eq

ue
nc

y

Need to add LSNs of all-visible pages

2323588

LSN

LSNs of all-visible pages0 100000

Fr
eq

ue
nc

y

Building a distribution was complicated

High code complexity

• Low reusability

Lots of code

• Didn’t work with failover or crash

Major existing infrastructure issues

Lessons Learned

• Sometimes attempts to simplify fail
• Define the problem better sooner

New Direction
What Went into Postgres 18

Long time between vacuuming and aggressive
vacuuming B1

W R W R W______________________ R W

V AgV

freeze B1

Other inserts triggered normal vacuums of
new pages

W R W R W_____ R W______R W______R W

V V V V

What if we scan and freeze B1 sooner?

W R W R W_____ R W______R W______R W

V V

freeze B1

V V

Switch framing to all-visible pages scanning

A = Autovacuum
A A A A A A A AA A

Adaptively eager scan all-visible pages

• All-visible pages more likely to need freezing
• Stop freezing if it isn’t working

• Only requires tracking information in one vacuum

Amortize the aggressive vacuum

W R W R W_____ R W______R W______R W

V V V

freeze % all-visible

V

freeze % all-visible freeze % all-visible

Adaptively eager scan all-visible pages

• Cap eager scanning at a percentage of all-visible pages
• Suspend eager scanning if not successfully freezing pages

GUC and table storage option

• Eagerly scan and freeze up to 20% of the table
• No more eager scanning for remainder of vacuum

• vacuum_max_eager_freeze_failure_rate

• Eagerly scan and fail to freeze 3% of 4096 block size region (32 MB)
• Suspend eager scanning until next region

Future Directions

Evict inserted
data

SELECT * queries
and sets hints

Evict hinted
data

Normal
vacuum

Set page vis
hint and VM

Vacuum
strategy evict

Aggressive
vacuum

Freeze tuples
and update VM

Vacuum
strategy evict

Set
hints

C
PD_ALL_VISIBLE

Read

B1

VM

B1

Write

B1B1B1

Read

B1

Write

Write

B1

VM

B1B1

Read

B1

Write

Freeze on-
access

Freeze on flush in checkpointer or bgwriter

Conclusion

ADAPTIVE ALGORITHMS
ARE POSSIBLE IN

POSTGRES

BUT ARE VERY HARD BUT WE SHOULD THINK
MORE ABOUT THEM

THANKS TO
ANDRES FREUND AND

ROBERT HAAS

Get your FREE socks @ Microsoft booth

Got 3 minutes?
We’d love your input
on some of our
Postgres work

	Slide 1: Improved Freezing In Vacuum
	Slide 2: Agenda
	Slide 3: Multi-Version Concurrency Control
	Slide 4: Wraparound
	Slide 5: Wraparound
	Slide 6: Wraparound
	Slide 7
	Slide 8: Freezing
	Slide 9: How do we know if our database is in danger?
	Slide 10: Per table: pg_class.relfrozenxid
	Slide 11: Who should freeze and when?
	Slide 12: Vacuum well-positioned to freeze
	Slide 13: Freezing inconsistent with vacuum’s mandate
	Slide 14: Visibility map
	Slide 15: Forcing vacuum of all-visible pages
	Slide 16: Freezing Timeline
	Slide 17: Aggressive Vacuum Overhead
	Slide 18: I/O Amplification Waiting to Freeze
	Slide 19: When should we freeze?
	Slide 20: Ideal Time To Freeze
	Slide 21: What can be eliminated
	Slide 22: Preemptive Freeze Algorithm Possibilities
	Slide 23: Freeze all visible tuples on every vacuum? (Ignore vacuum_freeze_min_age)
	Slide 24: Freeze all visible tuples on every vacuum?
	Slide 25: Diverse access patterns
	Slide 26: What about using # updates/deletes
	Slide 27: What about using # updates/deletes
	Slide 28: What about freezing every page once
	Slide 29: What about freezing every page once
	Slide 30: Need a model that includes time
	Slide 31: Quiescence theory
	Slide 32: Will the page be modified again?
	Slide 33
	Slide 34: How likely is a page to stay unmodified?
	Slide 35: Will the page be modified again?
	Slide 36: How often can you tolerate useless freezing?
	Slide 37: Is the page young enough to stay unmodified for target freeze duration?
	Slide 38: How likely is our specific page to stay unmodified for target freeze duration?
	Slide 39: Results: Consistent freezing
	Slide 40: Results: All-visible Debt Low and Stable
	Slide 41: Many short autovacuums
	Slide 42: Lower Total Time Spent Vacuuming
	Slide 43: Insert-only workloads, data not modified
	Slide 44: Missing data for pages not modified again
	Slide 45: Need to add LSNs of all-visible pages
	Slide 46: Building a distribution was complicated
	Slide 47: High code complexity
	Slide 48: Lessons Learned
	Slide 49: New Direction
	Slide 50: Long time between vacuuming and aggressive vacuuming B1
	Slide 51: Other inserts triggered normal vacuums of new pages
	Slide 52: What if we scan and freeze B1 sooner?
	Slide 53: Switch framing to all-visible pages scanning
	Slide 54: Adaptively eager scan all-visible pages
	Slide 55: Amortize the aggressive vacuum
	Slide 56: Adaptively eager scan all-visible pages
	Slide 57: GUC and table storage option
	Slide 58: Future Directions
	Slide 59: Conclusion
	Slide 60

