Parsing Postgres
logs the
non-pgBadger way

Kaarel Moppel, Freelance PostgreSQL Consultant
pgConf.EU 2025, Riga

$ whoami

e Full-time "wrestling” with databases since 2007/
e 20K+ hours in the Postgres ecosystem
o Many hats along the way
o Have developed somekind of a gut feeling on
“Postgres”-y things if anything
e Freelance DBE / DBA / consultant
o https://kmoppel.github.io/ (Postgres Blog & Services)

https://kmoppel.github.io/

Agenda

Value of Postgres server logs
Log management approaches
Common tools

Cloud / SaaS tools
Al-assisted tooling

A fresh take - pgweasel

Value of logs

Why look at Postgres logs ?

The Postgres Stats subsystem doesn't cover everything by far!

The obvious - get full details on PostgreSQL errors
Slow queries with specific execution params
Query plans (auto_explain)
Detect unauthenticated access / brute force attack attempts
o Sadly possible by default with Postgres ...
Background processing details (e.g. autovacuum, 3rd party exts.)
Lock wait details
Temp file details
Backend terminations / OOM

Log management approaches

Log management approaches

e Ad-hoc searching/grepping
o grep, pgBadger & co
o Exposing logfiles directly via file_fdw for SQL power

e Continuous analyzing
o Loadinginto a DB (e.g. Postgres + ZFS)
o Homegrown parsing (e.g. Cron+Python)
o Filebeat / ELK (Elastic) pipeline
m Sometimes via Syslog
o Prometheus integration, e.g. pgwatch “server_log_event_counts”
o Generic framework (Nagios etc) Postgres plugins
o Cloud tools e.g. Loggly or full APM suites
e Hooking into the Postgres log emitting mechanism
o Tapping into "emit_log_hook", a la “redislog"” (unmaintained sadly)

https://github.com/cybertec-postgresql/pgwatch
https://github.com/2ndquadrant-it/redislog

Common tools

Common tools - grep & co

The daily driver for many uses cases...

grep -E 'ERROR|FATAL' testdata/cloudsql.log
egrep 'ERROR|FATAL' testdata/cloudsql.log
egrep -C 'ERRORlFATAL' testdata/cloudsql.log

Alternatives like "ripgrep” can be faster / nicer ...

rg 'ERROR|FATAL' testdata/cloudsql.log

Common tools - awk

For ad-hoc analysis it's “possible” to achieve below tasks (and DBA-s
usually have something similar at their fingertips)...but not easy. LLMs
can help a bit of course :)

Find the N slowest queries

Errors by type

Connection attempts per user or host
Average query duration

Event counts by hour / minute

PS with CSV format life is somewhat nicer:

awk -F, '$12 == "ERROR" && $3 ~ /mydb/' postgresql.csv

Common tools - awk - an example (not perfect)

gawk '{
time_parts[1] will contain "HH:MM:SS", time_parts[2] will contain the milliseconds
split($2, time_parts, ".");

timestamp_str = $1" " time_parts[1];

Replace dashes and colons with spaces for mktime() format "YYYY MM DD HH MM SS".
gsub(/[-:]/, " ", timestamp_str);

Convert the string to an epoch timestamp.
epoch = mktime(timestamp_str);

Format the epoch time to an hourly key (e.g., "2025-05-2110").
hour_key = strftime("%Y-%m-%d %H", epoch);

hourly_counts[hour_key]++;
}
END {
print "--- Hourly Event Summary ---";
for (hour in hourly_counts) {
print hour ":00:00 | Events: " hourly_counts[hour];
}
}' testdata/cloudsql.log

Common tools - pgBadger

The #1 choice for many - a solid tool in principle! Main highlights:

A HTML report with graphs by default

Single-run and incremental modes

Parallel processing (--jobs) support (not for CSV)
Integrated remote access (SSH, http[s], [s]ftp)
Ecosystem aware - RDS Cloudwatch & pgBouncer
--exclude-query / --include-query regex object filtering
Bind parameters “merging” for prepared statements
JSON output

--dump-raw-csv for loading / more structure

:~$ pgbadger --help

https://github.com/darold/pgbadger

Common techniques - loading into Postgres

To gain the power of SQL! &, Works OOTB with CSV only...

CREATE FOREIGN TABLE pglog (
log time timestamp(3) with time zone,
user_name text, . .
database_name text, The fields / format can be best viewed

process_id integer,

connection from text, from “ﬁle_de” documentation

i iy https://www.postaresqgl.org/docs/

command_tag text, .

session start time timestamp with time zone, Cu rrent/flle—fdw_html

virtual transaction id text,

transaction id bigint,

error_severity text,

sql_state code text,

message text,

detail text, H

hint itext, PS - a reminder on pgbadger
internal query text,

internal query pos integer, "dump'raW'CSV mOde agaln fOr
context text,
ery text, default textual logs
query pos integer,
location text,
application name text,
backend type text,
leader pid integer,
query id bigint
) SERVER pglog
OPTIONS (filename 'log/pglog.csv', format

https://www.postgresql.org/docs/current/file-fdw.html
https://www.postgresql.org/docs/current/file-fdw.html

n
o
o |
N
©
3]
7
—
o
S
o
O

Cloud / SaaS tools - no shortage

The “problem space” is not new actually - quite some tools out there!

e Top managed DBaa$S providers have something built-in
o Usually with some proprietary query langage though :(

Datadog

AppDynamics

Pganalyze

Loggly

BetterStack

PS Note that in many cases you need to adhere to their understanding
of 'log_line_prefix’!

Al-assisted tooling ?

The big questions:

1. Can public LLM-s find the needle from a haystack?
2. lIs it cost-effective?
3. Security ...

Based on my experiments:

e No point to throw everything at LLMs - need to pre-filter
o Response time
o $$ can get prohibitive - 1GB log file ~ $1 with a fast model
o Context window limitations / chunking

e Thus need to get hands dirty anyways - meaning direct usage
loses in appeal...

Al-assisted tooling ?

Demo - a simple 400kB / 4k
line file with 10 problems:
https://dithub.com/kmoppel

weasel/blob/main/testdata/clo
udsql.log

Result: Misses 2 simple
“SELECT asd” ERROR's + 3
FATAL's with rarer protocol
errors

Model: Gemini 2.5 Flash

cloudsql

d LOG

find all errors from attached postgresq|l log file

Analysis Vv

The PostgreSQL log file, cloudsgl.log , contains the following ERROR and FATAL entries:
Errors (ERROR Level)
¢ Timestamp: 2025-05-21 10:35:01.627 UTC

o Error: ERROR: relation "public.heartbeat” does not exist at character 13

e User/DB: cloudsgqladmin connectingto cloudsqladmin from 127.0.0.1

« Statement: An INSERT INTO public.heartbeat statement that attemptstouse oN

CONFLICT (id) DO UPDATE failed because the public.heartbeat table was not founc

Fatal Errors (FATAL Level)
+ Timestamp: 2025-05-21 10:38:32.056 UTC
o Error: FATAL: password authentication failed for user "postgres'

» User/DB: connecting to from

https://github.com/kmoppel/pgweasel/blob/main/testdata/cloudsql.log
https://github.com/kmoppel/pgweasel/blob/main/testdata/cloudsql.log
https://github.com/kmoppel/pgweasel/blob/main/testdata/cloudsql.log

what was the longest autovacuum or autoanalyze dura

Al-assisted tooling ?

Analysis VvV

The longest duration for an autovacuum or autoanalyze operation in the log file was 215 s.

B ut b ette r a I re a d y W it h This duration was for the automatic analyze of table "postgres.public.pgbench_accoun
autovacuum analysis! |

Operation Table Elapsed Duration
cire Automatic vacuum cloudsqladmin.public.heartbeat 0.50s
As there are a gazillion of
Automatic analyze cloudsqladmin.public.heartbeat 0.00s

evolving models out there,
maybe One day good enough Automatic vacuum postgres.public.pgbench_accounts 0.00s

% cee Automatic analyze postgres.public.pgbench_accounts 21Ss
Automatic analyze postgres.public.pgbench _branches 0.00s
Automatic analyze postgres.public.pgbench_tellers 0.00s
Automatic vacuum cloudsqladmin.public.heartbeat 0.00s
Automatic analyze cloudsqladmin.public.heartbeat 0.00s

H Export to Sheets

Al-assisted tooling ?

Some “specialized” progress is being made of course, e.g.:

https://dithub.com/salesforce/logai

..but it's harder than you think!

Log Collection Log Cleaning and Log Information Log Analytics and
Preprocessing Extraction Intelligence

* From local files « Cleaning Noisy Data » Log Parsing * Analytics:
* From log platforms « Remove or Replace * Log Partitioning o Clustering
* Custom Log « Feature Extraction ¢ Summarization
Templates . « Intelligence

- Anomaly Detection
- Rootcause Analysis

https://github.com/salesforce/logai

Tooling - summary

I've personally tried out A LOT of tools...but mostly concluded:

e Not that they create as many problems as they solve, but every tool
brings some limitations as usual
o Which tend to surface only when past some first simpler milestones
e Sadly common pretty to hit bugs or performance / parallelism walls
e The tools keep changing...creating random backlog

Consider if you really need all those features!

Starting with something super-simple, but reliable, and fully under your
control, is never a bad idea!

pgweasel

pgweasel - to complement pgBadger

A new project, aiming to gain community attention / action!

The tool tries to be different from pgBadger, focusing on the “Pareto” DBA
flow of “on the server"” CLI usage for humans :)

e Much simple to handle - command + subcommand approach
o Less features - “less is more” philosophy

e Way faster! Currently in Golang
o Rust re-write started (in “rust-rewrite” branch)

e A single binary - Perl can get prohibitive on containers

e Zero-config, always works (no --log-line-prefix)

e User-friendly - relative time inputs, command aliases, auto-detect
logs from standard locations, automatic multi-core usage

pgweasel - looking for contributors / co-owner!

One person has quite a narrow view on things...

Plus the typical side-project time issue

Also...to make it work really good under all conditions a lot of server
log examples would be needed!

In case you have some
large real-life logfiles
without security risks,
please send me privately
some S3 etc link or just
open an Github issue!

1GB+ would be especially
nice! [,

https://github.com/kmoppel/pgweasel

Licence: PostgreSQL license

All kinds of feedback, feature ideas, pull
requests very much appreciated!
Or just a)

DEMO time!

https://github.com/kmoppel/pgweasel

