
Parsing Postgres
logs the
non-pgBadger way

Kaarel Moppel, Freelance PostgreSQL Consultant
 pgConf.EU 2025, Riga

$ whoami

● Full-time “wrestlingˮ with databases since 2007
● 20K+ hours in the Postgres ecosystem

○ Many hats along the way
○ Have developed somekind of a gut feeling on

“Postgresˮ-y things if anything
● Freelance DBE / DBA / consultant

○ https://kmoppel.github.io/ Postgres Blog & Services)

https://kmoppel.github.io/

Agenda

● Value of Postgres server logs
● Log management approaches
● Common tools
● Cloud / SaaS tools
● AI-assisted tooling
● A fresh take - pgweasel

Value of logs

The Postgres Stats subsystem doesnʼt cover everything by far!

● The obvious - get full details on PostgreSQL errors
● Slow queries with specific execution params
● Query plans (auto_explain)
● Detect unauthenticated access / brute force attack attempts

○ Sadly possible by default with Postgres …
● Background processing details (e.g. autovacuum, 3rd party exts.)
● Lock wait details
● Temp file details
● Backend terminations / OOM
● …

Why look at Postgres logs ?

Log management approaches

● Ad-hoc searching/grepping
○ grep, pgBadger & co
○ Exposing logfiles directly via file_fdw for SQL power

● Continuous analyzing
○ Loading into a DB (e.g. Postgres + ZFS
○ Homegrown parsing (e.g. Cron+Python)
○ Filebeat / ELK Elastic) pipeline

■ Sometimes via Syslog
○ Prometheus integration, e.g. pgwatch “server_log_event_countsˮ
○ Generic framework Nagios etc) Postgres plugins
○ Cloud tools e.g. Loggly or full APM suites

● Hooking into the Postgres log emitting mechanism
○ Tapping into “emit_log_hook ,ˮ a la “redislogˮ (unmaintained sadly)

● …

Log management approaches

https://github.com/cybertec-postgresql/pgwatch
https://github.com/2ndquadrant-it/redislog

Common tools

The daily driver for many uses cases…

grep E 'ERROR|FATAL' testdata/cloudsql.log
egrep 'ERROR|FATAL' testdata/cloudsql.log
egrep -c 'ERROR|FATAL' testdata/cloudsql.log

Alternatives like “ripgrepˮ can be faster / nicer …
rg 'ERROR|FATAL' testdata/cloudsql.log
…

Common tools - grep & co

For ad-hoc analysis itʼs “possibleˮ to achieve below tasks (and DBA-s
usually have something similar at their fingertips)...but not easy. LLMs
can help a bit of course :)

● Find the N slowest queries
● Errors by type
● Connection attempts per user or host
● Average query duration
● Event counts by hour / minute
● …

PS with CSV format life is somewhat nicer:

awk F, '$12 == "ERROR" && $3 ~ /mydb/' postgresql.csv

Common tools - awk

gawk '{
 # time_parts[1] will contain "HHMMSS", time_parts[2] will contain the milliseconds
 split($2, time_parts, ".");

 timestamp_str = $1 " " time_parts[1;

 # Replace dashes and colons with spaces for mktime() format "YYYY MM DD HH MM SS".
 gsub(/[-:]/, " ", timestamp_str);

 # Convert the string to an epoch timestamp.
 epoch = mktime(timestamp_str);

 # Format the epoch time to an hourly key (e.g., "20250521 10").
 hour_key = strftime("%Y%m-%d %H", epoch);

 hourly_counts[hour_key]++;
}
END {
 print "--- Hourly Event Summary ---";
 for (hour in hourly_counts) {
 print hour "0000 | Events: " hourly_counts[hour];
 }
}' testdata/cloudsql.log

Common tools - awk - an example (not perfect)

The #1 choice for many - a solid tool in principle! Main highlights:

● A HTML report with graphs by default
● Single-run and incremental modes
● Parallel processing (--jobs) support (not for CSV
● Integrated remote access SSH, http[s], [s]ftp)
● Ecosystem aware - RDS Cloudwatch & pgBouncer
● --exclude-query / --include-query regex object filtering
● Bind parameters “mergingˮ for prepared statements
● JSON output
● --dump-raw-csv for loading / more structure
● …

Common tools - pgBadger

https://github.com/darold/pgbadger

To gain the power of SQL! 💪 Works OOTB with CSV only…

Common techniques - loading into Postgres

The fields / format can be best viewed
from “file_fdw” documentation
https://www.postgresql.org/docs/
current/file-fdw.html

PS - a reminder on pgbadger
--dump-raw-csv mode again for
default textual logs

https://www.postgresql.org/docs/current/file-fdw.html
https://www.postgresql.org/docs/current/file-fdw.html

Cloud / SaaS tools

The “problem spaceˮ is not new actually - quite some tools out there!

● Top managed DBaaS providers have something built-in
○ Usually with some proprietary query langage though :(

● Datadog
● AppDynamics
● Pganalyze
● Loggly
● BetterStack
● …

PS Note that in many cases you need to adhere to their understanding
of `log_line_prefix`!

Cloud / SaaS tools - no shortage

Tooling - AD 2025

The big questions:

1. Can public LLM-s find the needle from a haystack?
2. Is it cost-effective?
3. Security …

Based on my experiments:
● No point to throw everything at LLMs - need to pre-filter

○ Response time
○ $$ can get prohibitive - 1GB log file ~ $1 with a fast model
○ Context window limitations / chunking

● Thus need to get hands dirty anyways - meaning direct usage
loses in appeal…

AI-assisted tooling ?

Demo - a simple 400kB / 4k
line file with 10 problems:
https://github.com/kmoppel/pg
weasel/blob/main/testdata/clo
udsql.log

Result: Misses 2 simple
“SELECT asdˮ ERRORʼs + 3
FATALʼs with rarer protocol
errors

Model: Gemini 2.5 Flash

AI-assisted tooling ?

https://github.com/kmoppel/pgweasel/blob/main/testdata/cloudsql.log
https://github.com/kmoppel/pgweasel/blob/main/testdata/cloudsql.log
https://github.com/kmoppel/pgweasel/blob/main/testdata/cloudsql.log

But better already with
autovacuum analysis!

As there are a gazillion of
evolving models out there,
maybe one day good enough
🤞 …

AI-assisted tooling ?

Some “specializedˮ progress is being made of course, e.g.:

https://github.com/salesforce/logai

…but itʼs harder than you think!

AI-assisted tooling ?

https://github.com/salesforce/logai

Iʼve personally tried out A LOT of tools…but mostly concluded:

● Not that they create as many problems as they solve, but every tool
brings some limitations as usual
○ Which tend to surface only when past some first simpler milestones

● Sadly common pretty to hit bugs or performance / parallelism walls
● The tools keep changing…creating random backlog

Consider if you really need all those features!

Starting with something super-simple, but reliable, and fully under your
control, is never a bad idea!

Tooling - summary

pgweasel

A new project, aiming to gain community attention / action!

The tool tries to be different from pgBadger, focusing on the “Paretoˮ DBA
flow of “on the serverˮ CLI usage for humans :)

● Much simple to handle - command + subcommand approach
○ Less features - “less is moreˮ philosophy

● Way faster! Currently in Golang
○ Rust re-write started (in “rust-rewriteˮ branch)

● A single binary - Perl can get prohibitive on containers
● Zero-config, always works (no --log-line-prefix)
● User-friendly - relative time inputs, command aliases, auto-detect

logs from standard locations, automatic multi-core usage
● …

pgweasel - to complement pgBadger

● One person has quite a narrow view on things…
● Plus the typical side-project time issue
● Also…to make it work really good under all conditions a lot of server

log examples would be needed!

pgweasel - looking for contributors / co-owner!

In case you have some
large real-life logfiles
without security risks,
please send me privately
some S3 etc link or just
open an Github issue!

1GB+ would be especially
nice! 🙏

https://github.com/kmoppel/pgweasel

Licence: PostgreSQL license

All kinds of feedback, feature ideas, pull
requests very much appreciated!
Or just a ⭐ :)

DEMO time!

https://github.com/kmoppel/pgweasel

