
ANTS AASMA

pgconf.eu 2025

Hello

Waiting for Commit Ants Aasma pgconf.eu 2025 2/30

About me

Waiting for Commit Ants Aasma pgconf.eu 2025 3/30

What this talk is about

Waiting for Commit Ants Aasma pgconf.eu 2025 4/30

Why do we replicate?

• Hardware fails.

• Storage devices are hardware.
• We want our data to still be there after the failure.
• RAID is a form of replication, but with a single point of failure.

Waiting for Commit Ants Aasma pgconf.eu 2025 5/30

Why do we replicate?

• Hardware fails.
• Storage devices are hardware.

• We want our data to still be there after the failure.
• RAID is a form of replication, but with a single point of failure.

Waiting for Commit Ants Aasma pgconf.eu 2025 5/30

Why do we replicate?

• Hardware fails.
• Storage devices are hardware.
• We want our data to still be there after the failure.

• RAID is a form of replication, but with a single point of failure.

Waiting for Commit Ants Aasma pgconf.eu 2025 5/30

Why do we replicate?

• Hardware fails.
• Storage devices are hardware.
• We want our data to still be there after the failure.
• RAID is a form of replication, but with a single point of failure.

Waiting for Commit Ants Aasma pgconf.eu 2025 5/30

Durability and consistency

• Two sides of the same coin.

• Both mean: “Will my transaction still be there?”
• Consistency: “If I ask a replica”
• Durability: “After there is a failure”

Waiting for Commit Ants Aasma pgconf.eu 2025 6/30

Durability and consistency

• Two sides of the same coin.
• Both mean: “Will my transaction still be there?”

• Consistency: “If I ask a replica”
• Durability: “After there is a failure”

Waiting for Commit Ants Aasma pgconf.eu 2025 6/30

Durability and consistency

• Two sides of the same coin.
• Both mean: “Will my transaction still be there?”
• Consistency: “If I ask a replica”

• Durability: “After there is a failure”

Waiting for Commit Ants Aasma pgconf.eu 2025 6/30

Durability and consistency

• Two sides of the same coin.
• Both mean: “Will my transaction still be there?”
• Consistency: “If I ask a replica”
• Durability: “After there is a failure”

Waiting for Commit Ants Aasma pgconf.eu 2025 6/30

There are failures and Failures

• How much is lost, for how long and under what circumstances.
• Some failures you really can’t ignore.
• In some cases, restoring from backup is acceptable.

• Or you classify it as a “does not happen” problem:

Waiting for Commit Ants Aasma pgconf.eu 2025 7/30

There are failures and Failures

• How much is lost, for how long and under what circumstances.
• Some failures you really can’t ignore.
• In some cases, restoring from backup is acceptable.

• Or you classify it as a “does not happen” problem:

Waiting for Commit Ants Aasma pgconf.eu 2025 7/30

It’s about waiting

• Synchronous replication is all about waiting.

• Get enough confirmations that data loss “can’t happen”.

For some value of “can’t”

• Almost no extra work needed.
• Response times get longer.
• May need much more concurrency to get same throughput.

Waiting for Commit Ants Aasma pgconf.eu 2025 8/30

It’s about waiting

• Synchronous replication is all about waiting.
• Get enough confirmations that data loss “can’t happen”.

For some value of “can’t”
• Almost no extra work needed.
• Response times get longer.
• May need much more concurrency to get same throughput.

Waiting for Commit Ants Aasma pgconf.eu 2025 8/30

It’s about waiting

• Synchronous replication is all about waiting.
• Get enough confirmations that data loss “can’t happen”.

For some value of “can’t”

• Almost no extra work needed.
• Response times get longer.
• May need much more concurrency to get same throughput.

Waiting for Commit Ants Aasma pgconf.eu 2025 8/30

It’s about waiting

• Synchronous replication is all about waiting.
• Get enough confirmations that data loss “can’t happen”.

For some value of “can’t”
• Almost no extra work needed.

• Response times get longer.
• May need much more concurrency to get same throughput.

Waiting for Commit Ants Aasma pgconf.eu 2025 8/30

It’s about waiting

• Synchronous replication is all about waiting.
• Get enough confirmations that data loss “can’t happen”.

For some value of “can’t”
• Almost no extra work needed.
• Response times get longer.

• May need much more concurrency to get same throughput.

Waiting for Commit Ants Aasma pgconf.eu 2025 8/30

It’s about waiting

• Synchronous replication is all about waiting.
• Get enough confirmations that data loss “can’t happen”.

For some value of “can’t”
• Almost no extra work needed.
• Response times get longer.
• May need much more concurrency to get same throughput.

Waiting for Commit Ants Aasma pgconf.eu 2025 8/30

But how does it work?

Waiting for Commit Ants Aasma pgconf.eu 2025 9/30

What we need to know

• PostgreSQL logs all data changes into WAL.

Writing changes to one place is easier than doing it in dozen places.
• Order of the changes encodes dependencies.

Logical - can’t allow withdraw if deposit didn’t happen.
Physical - index pointers should not go into empty space.

Waiting for Commit Ants Aasma pgconf.eu 2025 10/30

What we need to know

• PostgreSQL logs all data changes into WAL.
Writing changes to one place is easier than doing it in dozen places.

• Order of the changes encodes dependencies.

Logical - can’t allow withdraw if deposit didn’t happen.
Physical - index pointers should not go into empty space.

Waiting for Commit Ants Aasma pgconf.eu 2025 10/30

What we need to know

• PostgreSQL logs all data changes into WAL.
Writing changes to one place is easier than doing it in dozen places.

• Order of the changes encodes dependencies.

Logical - can’t allow withdraw if deposit didn’t happen.
Physical - index pointers should not go into empty space.

Waiting for Commit Ants Aasma pgconf.eu 2025 10/30

What we need to know

• PostgreSQL logs all data changes into WAL.
Writing changes to one place is easier than doing it in dozen places.

• Order of the changes encodes dependencies.
Logical - can’t allow withdraw if deposit didn’t happen.

Physical - index pointers should not go into empty space.

Waiting for Commit Ants Aasma pgconf.eu 2025 10/30

What we need to know

• PostgreSQL logs all data changes into WAL.
Writing changes to one place is easier than doing it in dozen places.

• Order of the changes encodes dependencies.
Logical - can’t allow withdraw if deposit didn’t happen.
Physical - index pointers should not go into empty space.

Waiting for Commit Ants Aasma pgconf.eu 2025 10/30

Lifecycle of a commit

Waiting for Commit Ants Aasma pgconf.eu 2025 11/30

How long the happy path takes

• Flush WAL to disk:
Local NVMe: 15 µs - 250 µs average
Network storage: 500 µs - 2’000 µs average

• Send data over network
Typical datacenter network: 100 - 500 µs
Same city: + couple hundred µs
Longer distance + 5 ms / 1’000 km

Waiting for Commit Ants Aasma pgconf.eu 2025 12/30

How long the happy path takes

• Flush WAL to disk:
Local NVMe: 15 µs - 250 µs average
Network storage: 500 µs - 2’000 µs average

• Send data over network
Typical datacenter network: 100 - 500 µs
Same city: + couple hundred µs
Longer distance + 5 ms / 1’000 km

Waiting for Commit Ants Aasma pgconf.eu 2025 12/30

The very happy path

Assumptions: 50µs disk latency, 200µs ping, 20µs processing.

1. Flush to local disk: 50 µs
2. Walsender wakes up, reads block, it gets sent immediately: 20µs
3. Data traverses the network: 100µs
4. Packet arrives at replica, walreceiver wakes, writes to disk, flushes and sends

feedback: + 70 µs
5. Feedback traverses the network: 100 µs
6. Walsender wakes up, processes feedback, wakes up backend: 20µs

Total: 360µs (vs 50µs local)

Waiting for Commit Ants Aasma pgconf.eu 2025 13/30

The cloud path

Assumptions: 500µs disk latency, 500µs ping (cross-AZ), 20µs processing.

1. Flush to local disk: 500 µs
2. Walsender wakes up, reads block, it gets sent immediately: 20µs
3. Data traverses the network: 250µs
4. Packet arrives at replica, walreceiver wakes, writes to disk, flushes and sends

feedback: + 520 µs
5. Feedback traverses the network: 250 µs
6. Walsender wakes up, processes feedback, wakes up backend: 20µs

Total: 1’560 µs (vs 500µs local)

Waiting for Commit Ants Aasma pgconf.eu 2025 14/30

Why do we care about latency

• Surely nobody notices if something takes a couple milliseconds more?

• Highly contended workloads care (a.k.a. Admdahl’s law):
If every commit waits for 5ms we can only manage 200 updates per second.

• Connection pools care.
Every millisecond extra latency means 1 more connection needed per 1’000 tps.

Waiting for Commit Ants Aasma pgconf.eu 2025 15/30

Why do we care about latency

• Surely nobody notices if something takes a couple milliseconds more?

• Highly contended workloads care (a.k.a. Admdahl’s law):
If every commit waits for 5ms we can only manage 200 updates per second.

• Connection pools care.
Every millisecond extra latency means 1 more connection needed per 1’000 tps.

Waiting for Commit Ants Aasma pgconf.eu 2025 15/30

Why do we care about latency

• Surely nobody notices if something takes a couple milliseconds more?

• Highly contended workloads care (a.k.a. Admdahl’s law):
If every commit waits for 5ms we can only manage 200 updates per second.

• Connection pools care.
Every millisecond extra latency means 1 more connection needed per 1’000 tps.

Waiting for Commit Ants Aasma pgconf.eu 2025 15/30

Hazards await

Waiting for Commit Ants Aasma pgconf.eu 2025 16/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay

• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay

• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send

• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay

• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay

• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay

• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms

• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The (slightly) unhappy path

• Other backend is already flushing: +0.5ms flush delay
• Walsender’s CPU is busy with other task: +1ms preemption delay
• Index build queued up 10MB of WAL: +10ms to write and +10ms to send
• Packet loss on the network: +3ms detection delay
• Walreceiver CPU busy: +1ms preemption delay
• Walreceiver flushing previous packet: +0.5ms flush delay
• Walsender is busy sending and doesn’t notice the feedback: +1ms
• . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 17/30

The very unhappy path

• Multipath driver gets confused: +20s

• Storage fabric switches DoS themselves: +60s
• Standby dies: . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 18/30

The very unhappy path

• Multipath driver gets confused: +20s
• Storage fabric switches DoS themselves: +60s

• Standby dies: . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 18/30

The very unhappy path

• Multipath driver gets confused: +20s
• Storage fabric switches DoS themselves: +60s
• Standby dies: . . .

Waiting for Commit Ants Aasma pgconf.eu 2025 18/30

Different levels of syncing

• synchronous_commit has levels
off - hopes and prayers mode
local - can survive a crash
remote_write - can survive a failover
on - can survive a crash and failover
remote_apply - read after write consistency

Waiting for Commit Ants Aasma pgconf.eu 2025 19/30

Head of line blocking

• If one commit is blocked, then all commits after it are also blocked.
• Replica that is busy syncing to disk can’t confirm transactions.

Waiting for Commit Ants Aasma pgconf.eu 2025 20/30

Consistency issues

• You can cancel a wait for the commit.
• Commit will become visible immediately.
• But commit is not durable.
• Might be gone after failover.
• Have to be careful with retry loop.

Waiting for Commit Ants Aasma pgconf.eu 2025 21/30

How to see the problem

• Track total commit latency - pg_stat_statements

• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk

LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL

Ipc/SyncRep - Waiting for confirmation from standby
• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.

• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

• Track total commit latency - pg_stat_statements
• Wait events:

Io/WalSync - Syncing WAL to local disk
LWLock/WALWrite - Waiting on someone else to sync WAL
Ipc/SyncRep - Waiting for confirmation from standby

• pg_wait_sampling to get high resolution.
• strace -p or perf record -p $walreceiver -e 'syscalls:sys_*'

github.com/cybertec-postgresql/perf-analysis to find outliers.

Waiting for Commit Ants Aasma pgconf.eu 2025 22/30

https://github.com/cybertec-postgresql/perf-analysis

perf-analysis

$ perf-analysis.py syscalls-*.script.zst \
--include=fdatasync,pwrite64,epoll_wait,fsync \
--stat --base=10

latency [ms] pwrite64 fdatasync epoll_wait fsync
0.000 1 3
0.001 12213 179 34
0.010 9114
0.100 19 148
1.000 2 11529 132 74
10.000 16 1 37

Waiting for Commit Ants Aasma pgconf.eu 2025 23/30

Throwing hardware at the problem

• Buy better storage.

• Quorum commit can hide tail latencies.

Needs at least 2 replicas.

Waiting for Commit Ants Aasma pgconf.eu 2025 24/30

Throwing hardware at the problem

• Buy better storage.
• Quorum commit can hide tail latencies.

Needs at least 2 replicas.

Waiting for Commit Ants Aasma pgconf.eu 2025 24/30

Throwing hardware at the problem

• Buy better storage.
• Quorum commit can hide tail latencies.

Needs at least 2 replicas.

Waiting for Commit Ants Aasma pgconf.eu 2025 24/30

Quorum commit

• With 2 replicas it is unlikely that both have problem simultaneously.
• synchronuos_standby_names = 'ANY 1 (node2, node3, node4)'
• Primary still needs to flush before replication can begin.

PostgreSQL could improve on this.

Waiting for Commit Ants Aasma pgconf.eu 2025 25/30

Picking the right replica

• If the primary fails then quorum other nodes have the latest commit.
• Need to reach num_replicas - quorum + 1 nodes to be sure to see at least one of

them.
• Look at pg_last_wal_receive_lsn() and pg_last_wal_replay_lsn()
• Or use Patroni synchronous_mode: quorum

Waiting for Commit Ants Aasma pgconf.eu 2025 26/30

Summary

• Figure out if you can afford to lose transactions.
• If you have to use it, know that every performance issue is amplified.
• Be prepared to use more connections.
• Add replicas to hide bad latencies.
• Automatically managing quorum commit is hard, use existing tools.

Waiting for Commit Ants Aasma pgconf.eu 2025 27/30

	Hello
	About me
	What this talk is about
	But how does it work?

