ANTS AASMA
pgconf.eu 2025

<-CYBERTEC

POSTGRESQL SERVICES & SUPPORT

Hello

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 2/30 {]

About me

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 3/30 {]

What this talk is about

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 4/30 {]

Why do we replicate?

e Hardware fails.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 5/30 {]

Why do we replicate?

e Hardware fails.
e Storage devices are hardware.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 5/30 {]

Why do we replicate?

e Hardware fails.
e Storage devices are hardware.
e We want our data to still be there after the failure.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 5/30 {]

Why do we replicate?

FETWETCR ETIER

Storage devices are hardware.

We want our data to still be there after the failure.

RAID is a form of replication, but with a single point of failure.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 5/30 {]

Durability and consistency

e Two sides of the same coin.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 6/30 {]

Durability and consistency

¢ Two sides of the same coin.
¢ Both mean: “Will my transaction still be there?”

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 6/30 {]

Durability and consistency

¢ Two sides of the same coin.
¢ Both mean: “Will my transaction still be there?”
e Consistency: “If | ask a replica”

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 6/30 {]

Durability and consistency

Two sides of the same coin.

Both mean: “Will my transaction still be there?”
Consistency: “If | ask a replica”

Durability: “After there is a failure”

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 6/30 {]

There are failures and Failures

e How much is lost, for how long and under what circumstances.
¢ Some failures you really can't ignore.
* |n some cases, restoring from backup is acceptable.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 7/30 {]

There are failures and Failures

How much is lost, for how long and under what circumstances.
¢ Some failures you really can't ignore.
In some cases, restoring from backup is acceptable.

Or you classify it as a “does not happen” problem:

English > National

G-Drive Fire Destroys 125,000 Officials' Data

No Backup Available for Government Cloud System, Recovery Uncertain

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 7/30 {]

It's about waiting

e Synchronous replication is all about waiting.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 8/30 {]

It's about waiting

e Synchronous replication is all about waiting.
¢ Get enough confirmations that data loss “can’t happen”.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 8/30 {]

It's about waiting

e Synchronous replication is all about waiting.

¢ Get enough confirmations that data loss “can’t happen”.
m For some value of “can’t”

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 8/30 {]

It's about waiting

e Synchronous replication is all about waiting.

¢ Get enough confirmations that data loss “can’t happen”.
m For some value of “can’t”

e Almost no extra work needed.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 8/30 {]

It's about waiting

Synchronous replication is all about waiting.

Get enough confirmations that data loss “can’t happen”.
m For some value of “can’t”

Almost no extra work needed.
Response times get longer.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 8/30 {]

It's about waiting

Synchronous replication is all about waiting.

Get enough confirmations that data loss “can’t happen”.
m For some value of “can’t”

Almost no extra work needed.
Response times get longer.
May need much more concurrency to get same throughput.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 8/30 {]

But how does it work?

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 9/30 {]

What we need to know

e PostgreSQL logs all data changes into WAL.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 10/30 {]

What we need to know

e PostgreSQL logs all data changes into WAL.
m Writing changes to one place is easier than doing it in dozen places.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 10/30 {]

What we need to know

e PostgreSQL logs all data changes into WAL.
m Writing changes to one place is easier than doing it in dozen places.

¢ Order of the changes encodes dependencies.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 10/30 {]

What we need to know

e PostgreSQL logs all data changes into WAL.
m Writing changes to one place is easier than doing it in dozen places.

¢ Order of the changes encodes dependencies.
m Logical - can't allow withdraw if deposit didn’t happen.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 10/30 {]

What we need to know

e PostgreSQL logs all data changes into WAL.

m Writing changes to one place is easier than doing it in dozen places.
¢ Order of the changes encodes dependencies.

m Logical - can't allow withdraw if deposit didn’t happen.

m Physical - index pointers should not go into empty space.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 10/30 {]

Lifecycle of a commit

Heartbeat
write
flush
replay

Apply Done

SyncRapWait

Wakeup

Appl
WAL BUFFERS PPy
Read

WRITE fdatasync fdatasync

N—

CYBERTEC PostgreSQL in ever more critical environments 2025 < CYBERTEC

Waiting for Commit Ants Aasma

11/30

How long the happy path takes

e Flush WAL to disk:
m Local NVMe: 15 ps - 250 ps average
m Network storage: 500 ps - 2’000 ps average

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 12/30 {]

How long the happy path takes

e Flush WAL to disk:
m Local NVMe: 15 ps - 250 ps average
m Network storage: 500 ps - 2’000 ps average

* Send data over network
m Typical datacenter network: 100 - 500 ps
m Same city: + couple hundred ps
m Longer distance + 5 ms / 1000 km

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 12/30 {]

The very happy path

Assumptions: 50us disk latency, 200pus ping, 20us processing.

Flush to local disk: 50 ps

Walsender wakes up, reads block, it gets sent immediately: 20us

Data traverses the network: 100pus

Packet arrives at replica, walreceiver wakes, writes to disk, flushes and sends
feedback: + 70 ps

5. Feedback traverses the network: 100 ps

6. Walsender wakes up, processes feedback, wakes up backend: 20us

S WN =

Total: 360us (vs 50ps local)

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 13/30 (

The cloud path

Assumptions: 500us disk latency, 500us ping (cross-AZ), 20us processing.

Flush to local disk: 500 ps

Walsender wakes up, reads block, it gets sent immediately: 20us

Data traverses the network: 250us

Packet arrives at replica, walreceiver wakes, writes to disk, flushes and sends
feedback: + 520 ps

5. Feedback traverses the network: 250 ps

6. Walsender wakes up, processes feedback, wakes up backend: 20us

S WN =

Total: 17560 ps (vs 500ps local)

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 14/30 (

Why do we care about latency

e Surely nobody notices if something takes a couple milliseconds more?

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 15/30 {]

Why do we care about latency

e Surely nobody notices if something takes a couple milliseconds more?

e Highly contended workloads care (a.k.a. Admdahl’s law):
m If every commit waits for 5ms we can only manage 200 updates per second.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 15/30 {]

Why do we care about latency

e Surely nobody notices if something takes a couple milliseconds more?

e Highly contended workloads care (a.k.a. Admdahl’s law):
m If every commit waits for 5ms we can only manage 200 updates per second.

e Connection pools care.
m Every millisecond extra latency means 1 more connection needed per 1'000 tps.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 15/30 {]

Hazards await

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 16/30 {]

The (slightly) unhappy path

e Other backend is already flushing: +0.5ms flush delay

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 {]

The (slightly) unhappy path

e Other backend is already flushing: +0.5ms flush delay
e Walsender’s CPU is busy with other task: +1ms preemption delay

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 (

The (slightly) unhappy path

e Other backend is already flushing: +0.5ms flush delay
e Walsender’s CPU is busy with other task: +1ms preemption delay
¢ Index build queued up 10MB of WAL: +10ms to write and +10ms to send

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 {]

The (slightly) unhappy path

Other backend is already flushing: +0.5ms flush delay

Walsender's CPU is busy with other task: +1ms preemption delay

Index build queued up T0MB of WAL: +10ms to write and +10ms to send
Packet loss on the network: +3ms detection delay

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 (

The (slightly) unhappy path

Other backend is already flushing: +0.5ms flush delay

Walsender's CPU is busy with other task: +1ms preemption delay

Index build queued up T0MB of WAL: +10ms to write and +10ms to send
Packet loss on the network: +3ms detection delay

Walreceiver CPU busy: +1Ims preemption delay

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 (

The (slightly) unhappy path

Other backend is already flushing: +0.5ms flush delay

Walsender's CPU is busy with other task: +1ms preemption delay

Index build queued up T0MB of WAL: +10ms to write and +10ms to send
Packet loss on the network: +3ms detection delay

Walreceiver CPU busy: +1Ims preemption delay

Walreceiver flushing previous packet: +0.5ms flush delay

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 (

The (slightly) unhappy path

Other backend is already flushing: +0.5ms flush delay

Walsender's CPU is busy with other task: +1ms preemption delay

Index build queued up T0MB of WAL: +10ms to write and +10ms to send
Packet loss on the network: +3ms detection delay

Walreceiver CPU busy: +1Ims preemption delay

Walreceiver flushing previous packet: +0.5ms flush delay

Walsender is busy sending and doesn’t notice the feedback: +1ms

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 (

The (slightly) unhappy path

Other backend is already flushing: +0.5ms flush delay

Walsender's CPU is busy with other task: +1ms preemption delay

Index build queued up T0MB of WAL: +10ms to write and +10ms to send
Packet loss on the network: +3ms detection delay

Walreceiver CPU busy: +1Ims preemption delay

Walreceiver flushing previous packet: +0.5ms flush delay

Walsender is busy sending and doesn’t notice the feedback: +1ms

{
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 17/30 (

The very unhappy path

e Multipath driver gets confused: +20s

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 18/30 {]

The very unhappy path

e Multipath driver gets confused: +20s
¢ Storage fabric switches DoS themselves: +60s

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 18/30 {]

The very unhappy path

e Multipath driver gets confused: +20s
¢ Storage fabric switches DoS themselves: +60s
e Standby dies: ...

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 18/30 {]

Different levels of syncing

¢ synchronous_commit has levels

Waiting for Commit

off - hopes and prayers mode

local - can survive a crash

remote_write - can survive a failover

on - can survive a crash and failover
remote_apply - read after write consistency

Ants Aasma

pgconf.eu 2025

[]
[]
19/30 @

Head of line blocking

¢ |f one commit is blocked, then all commits after it are also blocked.
¢ Replica that is busy syncing to disk can’t confirm transactions.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 20/30 {]

Consistency issues

You can cancel a wait for the commit.
Commit will become visible immediately.
But commit is not durable.

Might be gone after failover.

Have to be careful with retry loop.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 VAVEL) {]

How to see the problem

e Track total commit latency - pg_stat_statements

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

e Track total commit latency - pg_stat_statements
* Wait events:

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

e Track total commit latency - pg_stat_statements
* Wait events:
m lo/WalSync - Syncing WAL to local disk

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

e Track total commit latency - pg_stat_statements
¢ Wait events:
m lo/WalSync - Syncing WAL to local disk
m LWLock/WALWrite - Waiting on someone else to sync WAL

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

e Track total commit latency - pg_stat_statements

¢ Wait events:
m lo/WalSync - Syncing WAL to local disk
m LWLock/WALWrite - Waiting on someone else to sync WAL
m |pc/SyncRep - Waiting for confirmation from standby

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

e Track total commit latency - pg_stat_statements

¢ Wait events:
m lo/WalSync - Syncing WAL to local disk
m LWLock/WALWrite - Waiting on someone else to sync WAL
m |pc/SyncRep - Waiting for confirmation from standby

* pg_wait_sampling to get high resolution.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

Track total commit latency - pg_stat_statements
Wait events:
m lo/WalSync - Syncing WAL to local disk
m LWLock/WALWrite - Waiting on someone else to sync WAL
m |pc/SyncRep - Waiting for confirmation from standby
pg_wait_sampling to get high resolution.
strace -porperf record -p $walreceiver -e 'syscalls:sys_x*'

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

How to see the problem

Track total commit latency - pg_stat_statements
Wait events:
m lo/WalSync - Syncing WAL to local disk
m LWLock/WALWrite - Waiting on someone else to sync WAL
m |pc/SyncRep - Waiting for confirmation from standby
pg_wait_sampling to get high resolution.
strace -porperf record -p $walreceiver -e 'syscalls:sys_x*'
m github.com/cybertec-postgresgl/perf-analysis to find outliers.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 22/30 {]

https://github.com/cybertec-postgresql/perf-analysis

perf-analysis

$ perf-analysis.py syscalls-*.script.zst \
--include=fdatasync,pwrite64,epoll_wait,fsync \
--stat --base=10
latency [ms] pwrite64 fdatasync epoll_wait fsync

.000
.001
.010
.100
.000
.000

S 2 oo

Waiting for Commit

12213
9114
19

2 11529

16

Ants Aasma

1
179

148
132
1

3
34

74
37

(]
[
pgconf.eu 2025 23/30 @

Throwing hardware at the problem

* Buy better storage.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 24/30 {]

Throwing hardware at the problem

* Buy better storage.
e Quorum commit can hide tail latencies.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 24/30 {]

Throwing hardware at the problem

* Buy better storage.

e Quorum commit can hide tail latencies.
m Needs at least 2 replicas.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 24/30 {]

Quorum commit

e With 2 replicas it is unlikely that both have problem simultaneously.
® synchronuos_standby_names = 'ANY 1 (node2, node3, node4)'

e Primary still needs to flush before replication can begin.
m PostgreSQL could improve on this.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 25/30 {]

Picking the right replica

If the primary fails then quorum other nodes have the latest commit.

Need to reach num_replicas - quorum + 1 nodes to be sure to see at least one of
them.

Look at pg_last_wal_receive_lsn() and pg_last_wal_replay_lsn()

Or use Patroni synchronous_mode: quorum

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 26/30 {]

Summary

Figure out if you can afford to lose transactions.

If you have to use it, know that every performance issue is amplified.
Be prepared to use more connections.

Add replicas to hide bad latencies.

Automatically managing quorum commit is hard, use existing tools.

([J
[J
Waiting for Commit Ants Aasma pgconf.eu 2025 27/30 {]

Our partners at PGConf.EU

Cr
©) OpenSourceP®
\ / Your Trusted Data Partner

Open Alliance
For PostgreSQL Education

Your Pathway to Verified PostgreSQL Skills

Scan for Updates

CEAAD
[=]

oapg-edu.org

[=

PGDay Austria
returns in 2026

Scan for updates

GDAY EEEE
Austria :
[=].

(™ Vienna Q 17 September 2026 pgday.at

	Hello
	About me
	What this talk is about
	But how does it work?

