Jdb .
X snowflake

Boosting Typical Query Patterns

Roberto Mello
roberto.mello@gmail.com

Snowflake
October 22, 2025

Introduction

About
Crunchy Data and Snowflake

Talk Overview

25+ years experience with PostgreSQL and
databases

@ Previous: Principal Solutions Architect @ Crunchy
Data
@ Managed DBA and DevOps teams

@ BS/MS Computer Science, Utah State University

Roberto Mello Personal
Senior Solutions Engineer

@ Brazilian (Manaus) expatriate in Utah
roberto.mello@gmail.com @ Interests: more computer stuff
Linkedin: robertomello @ Photography, Snowboarding, Austrian Economics

X: robertobmello
Roberto Mello PostgreSQL Conference Europe 2025

Introduction

About
Crunchy Data and Snowflake

Talk Overview

Jdb |
X snowflake

crunchydata

https://www.crunchydata.com/blog/crunchy-data-joins-snowflake

Roberto Mello PostgreSQL Conference Europe 2025

https://www.crunchydata.com/blog/crunchy-data-joins-snowflake

Introduction

About
Crunchy Data and Snowflake

Talk Overview

Talk Overview

@ PostgreSQL 18 introduces significant performance improvements
@ Foundational changes and real-world query patterns

What We’ll Cover:
@ Asynchronous I/O subsystem
@ B-tree skip scans
© Parallel GIN index creation
© Query optimizer improvements
© EXPLAIN enhancements
@ UUID v7 performance
@ Real-world Applications

Roberto Mello PostgreSQL Conference Europe 2025

Asynchronous /O

Understanding the Problem
Async |/O Solution
Configuration and Performance

Traditional I/O

Traditional PostgreSQL 1/O: Inefficient because:

° .
Backend: "I need page 1000" One request at a time

Kernel: [reads page 1000] @ Backend idle while
Backend: [waits...] waiting for 1/0
Kernel: "Here's page 1000" @ Can't batch or
Backend: "Thanks! Now I need page 1001" parallelize requests

Kernel: [reads page 1001]

Backend: [waits...] @ Underutilizes modern

storage (NVMe, SSD)

Postgres 17 paved the way with the introduction of read stream and vectored I/O APIs,
internal abstractions. See Andres Freund https://youtu.be/qX50xrHwQad

Roberto Mello PostgreSQL Conference Europe 2025

https://youtu.be/qX50xrHwQa4

Asynchronous /O

Understanding the Problem
Async |/O Solution
Configuration and Performance

Async I/O
PostgreSQL 18 Async 1/O: Benefits:
Backend: "I need pages 1000, 1001, 1002, 1003..." @ Batch multiple I/O
Kernel: [queues all requests] requests
Backend: [continues other work] @ Kernel can optimize
Kernel: [returns pages as ready] request ordering

Backend: [processes completed I/0] o
@ Better utilization of

parallel storage

@ Backend does useful
work while waiting

Roberto Mello PostgreSQL Conference Europe 2025

Asynchronous /O

Understanding the Problem
Async |/O Solution
Configuration and Performance

Async 1/0: Configuration

GUC Parameters:

17+: Control I/0 batching (blocks of 8kb)
io_combine_limit = 16 # requests per batch (128kb default)

18: I/0 method selection
io_method = 'worker' # default, usually performs better.

18: Largest I/0 size in operations that combine I/0 (blocks of 8kb, default is 16 = 128kB)
silently limits io_combine_limit. Typically 1MB on Unix and 128kB on Windows.
io_max_combine_limit = 16

Operations Most Benefitted:
@ Sequential scans of large tables
@ Bitmap heap scans (multi-index queries)
@ VACUUM operations

Roberto Mello PostgreSQL Conference Europe 2025

Asynchronous /O

Understanding the Problem
Async /O Solution
Configuration and Performance

Async I/0: Benchmark Results

Async 1/0 Performance Comparison

Sequential Scan Vacuum Mixed Workload
0.53s 3.72s 3.68s 60 _60.11s 60.225
05 35
3.0 50
04 — —
] €25 g
] ERE < 40
803 8 S
z 0.27s g 2.0 @ 30
Y 0.22s P p
802 g s g
3] 3] & 20
1.0
0.1
05 10
0.0 0.0 0
PG16 PG17 PG18 PG16 PG17 PG18 PG16 PG17 PG18

Key Findings:
@ Sequential scans: 15-25% faster
@ Bitmap heap scans: 10-18% faster
@ VACUUM: 20-300% faster

Roberto Mello

Asynchronous /O Understanding the Problem

Async |/O Solution

Configuration and Performance

Async 1/0: Real-World Impact

Example: Analytics Query

SELECT category, COUNT(*), AVG(amount)
FROM large_orders

WHERE created_at >= '2025-01-01'

GROUP BY category;

PG16: 12.3 seconds (sequential scan)
PG18: 9.8 seconds (sequential scan with async I/O)

20% improvement without code changes

Roberto Mello PostgreSQL Conference Europe 2025

Asynchronous /O Understanding the Problem

Async |/O Solution

Configuration and Performance

Async 1/0: Tuning for Production

TID PRIO USER DISK READ DISK WRITE> COMMAND

605556 be/4 999 0.00 B/s 16.73 M/s postgres: postgres postgres 10.10.0.208(50254) VACUUM
604968 be/4 999 0.00 B/s 63.44 K/s postgres: walwriter

604957 be/4 999 66.72 M/s 0.00 B/s postgres: io worker 1

604958 be/4 999 102.11 M/s 0.00 B/s postgres: io worker 0

604959 be/4 999 46.70 M/s 0.00 B/s postgres: io worker 2

604960 be/4 999 23.00 M/s 0.00 B/s postgres: io worker 4

604961 be/4 999 33.70 M/s 0.00 B/s postgres: io worker 3

io_method = worker # default: pool of I/0 worker processes
io_uring: Linux-specific async I/0 queues
sync: traditional synchronous I/0 (backwards compatibility)

io_workers = 3 # Default too low for larger systems
Probably: set to approximately 1/4 of total CPU cores
io_max_combine_limit = 16 # limits io_combine_limit.
typical max: Unix 128 (1 MB), Windows 16 (128 kB)
io_combine_limit = 16 # requests per batch (128kb default)
raise with io_max_combine_limit to increase the I/0 size

'See: Tomas Vondra, https://vondra.me/posts/tuning-aio-in-postgresql-18/

Roberto Mello PostgreSQL Conference Europe 2025

https://vondra.me/posts/tuning-aio-in-postgresql-18/

Asynchronous /O

Understanding the Problem
Async |/O Solution
Configuration and Performance

Async 1/O: Performance Comparison

Query Timing by /O Method'. Benchmark: Ryzen 9900X (12 cores/24 threads), 4x NVMe SSDs (RAIDO)

- 35888 EEEE

i

'See: Tomas Vondra, https://vondra.me/posts/tuning-aio-in-postgresql-18/

Roberto Mello PostgreSQL Conference Europe 2025

https://vondra.me/posts/tuning-aio-in-postgresql-18/

Asynchronous /O Understanding the Problem

Async |/O Solution

Configuration and Performance

Async 1/0: Tuning Recommendations

@ Keep default io_method = worker

o Best compatibility across workloads. io_uring is Linux-specific
@ Increase io_workers based on cores

o Start with 1/4 of CPU cores. Monitor and adjust based on workload
© Test with your workload

e Performance varies by query patterns. Bitmap scans benefit most
© Watch out for

e Signal overhead between backends and workers
o File descriptor limits
o /O bandwidth saturation

Roberto Mello PostgreSQL Conference Europe 2025

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Skip Scan

Acceptable performance with seldom-run queries that might not require a dedicated index.

CREATE INDEX idx_country_user
ON orders(country, user_id);

-- Query on second column only
SELECT * FROM orders WHERE user_id = 12345;

Before PG18:
@ Index not usable (query doesn’t start with country)
@ Falls back to sequential scan
@ Slow on large tables
@ Advice: "Create a single-column index on user_id”

Roberto Mello PostgreSQL Conference Europe 2025

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Skip Scan: The Solution

Postgres 18 treats the index as a "series of logical subindexes”
@ Planner recognizes opportunity to use multi-column index
@ "Skips” over distinct values of leading column
@ For each distinct country, searches for user_id
@ Most effective when leading column has low cardinality

Example:
@ 10 distinct countries (low cardinality)
@ 1M distinct user_ids (high cardinality)
@ Skip scan does 10 targeted index searches
@ Much faster than sequential scan

Roberto Mello PostgreSQL Conference Europe 2025

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Skip Scan

PostgreSQL 16: (without single-column index on created_at)

EXPLAIN (ANALYZE, TIMING) SELECT id, project_id, created_at FROM skip_scan_test
WHERE created_at > NOW() - INTERVAL '30 days' ORDER BY created_at DESC LIMIT 100;

Limit (cost=93265.53..93277.50 rows=100 width=20) (actual time=455.743..466.308 rows=100 loops=1)
-> Gather Merge (cost=93265.53..135927.94 rows=356308 width=20) (actual time=455.741..466.277 rows=100 loops=1)
Workers Planned: 4
Workers Launched: 4
-> Sort (cost=92265.47..92488.16 rows=89077 width=20) (actual time=450.614..450.619 rows=90 loops=5)
Sort Key: created_at DESC
Sort Method: top-N heapsort Memory: 36kB
Worker 0: Sort Method: top-N heapsort Memory: 36kB
Worker 1: Sort Method: top-N heapsort Memory: 37kB
Worker 2: Sort Method: top-N heapsort Memory: 37kB
Worker 3: Sort Method: top-N heapsort Memory: 37kB
-> Parallel Seq Scan on skip_scan_test (cost=0.00..88861.01 rows=89077 width=20) (actual time=0.024..440.729 rows=69¢
Filter: (created_at > (now() - '30 days'::interval))
Rows Removed by Filter: 930074
Planning Time: 0.116 ms
Execution Time: 466.354 ms

Roberto Mello PostgreSQL Conference Europe 2025

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Skip Scan

PostgreSQL 18: (uses composite index with skip scan)
QUERY PLAN

Limit (cost=78397..78409 rows=100) (actual time=151..173 rows=100)
-> Gather Merge (cost=78397..122040 rows=364500)
Workers Planned: 4
Workers Launched: 4
-> Sort (cost=77397..77624 rows=91125)
-> Parallel Bitmap Heap Scan on skip_scan_test
Recheck Cond: (created_at > ...)
-> Bitmap Index Scan on idx_skip_scan_composite
Index Cond: (created_at > ...)
Index Searches: 1001
Execution Time: 173.719 ms

Faster using composite index (project_id, created_at) via skip scan

Roberto Mello PostgreSQL Conference Europe 2025

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Skip Scan: Benchmark Results

B-tree Skip Scan Performance
= PG16

2.00 = PG17
== PG18

175

1.50

0.00 ll. ——- I

Time (seconds)
s o = =
@ 3 o i
g & 8 u

°
&

sca ery
Tymein® quer? \:\\&e‘e‘\ Rang® Quets D\S““d Qv

@ Biggest improvement with low-cardinality leading column
@ Effective for narrow range queries on composite indexes
@ Best for queries on non-leading columns with selective filters

Roberto Mello PostgreSQL Conference Europe

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Parallel GIN: Background

GIN Indexes: Generalized Inverted Index
@ Used for arrays, JSONB, full-text search
@ Can be slow to build on large tables (higher maintenance work mem helps)

Postgres 18
@ Parallel index builds available for GIN, in addition to B-tree, BRIN

Roberto Mello PostgreSQL Conference Europe 2025

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Parallel GIN: Configuration
Configuration:
SET max_parallel_maintenance_workers = 4;

-- Create index (automatically uses parallel workers)
CREATE INDEX idx_tags ON posts USING GIN(tags);

TID PRIO< USER DISK READ DISK WRITE COMMAND
604957 be/4 999 377.75 K/s 0.00 B/s postgres: io worker 1
604958 be/4 999 47.22 K/s 0.00 B/s postgres: io worker 0
604959 be/4 999 39.35 K/s 0.00 B/s postgres: io worker 2
604962 be/4 999 31.48 K/s 31.48 K/s postgres: checkpointer
604965 be/4 999 15.74 K/s 7.87 K/s postgres: checkpointer
610510 be/4 999 15.74 K/s 25.95 M/s postgres: parallel worker for PID 2032
610511 be/4 999 129.85 K/s 0.00 B/s postgres: parallel worker for PID 2032
610512 be/4 999 7.87 K/s 0.00 B/s postgres: parallel worker for PID 2032

Roberto Mello PostgreSQL Conference Europe

Index Improvements B-tree Skip Scan

Parallel GIN Index Creation

Parallel GIN: Benchmark Results

Parallel GIN Index Creation Performance

JSONB Index FULLTEXT Index ARRAY Index
—e— PG16 230 —e— PG16
—e— PG17 —e— PG17
—e— PG18 —e— PG18

240 —®— PG16
—e— PG17

230 -—e— PG18

2 o) 2,
© © ©
E g E
£ 220 & £ 210
5 g 5
Z 210 S 60 2 200
g 3 3
2 e 13
S oo S S 190
b g b
180
£ 190 = =
20 170
180
4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
Max Parallel Workers Max Parallel Workers Max Parallel Workers

Results (8-core test system):
@ 4 workers: Best performance for JSONB & Array indexes
@ 8 workers: Performance degradation (12-25% slower)

Important: Set max_parallel maintenance workers < CPU cores

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Multiple Enhancements

@ Hash Join & GROUP BY improvements

Q@ IN (VALUES) — = ANY transformation

© OR clauses — array operations for indexable queries

© Unnecessary self-join removal

© Speed up of INTERSECT/EXCEPT, window aggregates, view column aliases
© SELECT DISTINCT internal reordering to avoid sorting

Mostly no query changes needed.

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: IN (VALUES) Performance

Postgres 18 adds nbtree skip scan building on Postgres 17 work on IN() / = ANY()
condition index scans

@ items that are close together (1,2, 3) or far apart (10_.000, 20_000)

@ Supports complex combinations of IN() conditions, = conditions, as well as <, >,
<=, =>conditions

@ Only reads index leaf pages that might have matches

explain (analyze, costs off, timing off)

select * from tab

where a in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and b = 5_000;
QUERY PLAN

Index Only Scan using multicol on tab (rows=10.00 loops=1)
Index Cond: ((a = ANY ('{1,2,3,4,5,6,7,8,9,10}'::integer[1)) AND (b = 5000))
Heap Fetches: 0
Index Searches: 10
Buffers: shared hit=31
Planning Time: 0.028 ms

Roberto Mello PostgreSQL Conference Europe 2025

https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854
https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: OR to Array
Rewrite OR conditions to better use indexes

SELECT * FROM products
WHERE category = 'electronics'

OR category = 'clothing'
OR category = 'food';
PG18 Optimization:

SELECT * FROM products
WHERE category = ANY (ARRAY['electromnics', 'clothing', 'food']);

Can use bitmap index scans more efficiently - reports of 100x improvement.

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Self-Join Removal

SELECT t1.*
FROM orders t1 JOIN orders t2 ON tl.id = t2.id
WHERE t1.status = 'completed';
Postgres 18:
@ Detects redundant self-join and removes t2 table

@ Executes as simple SELECT * FROM orders WHERE status = ’completed’

Common in:
@ ORM-generated queries
@ View definitions
@ Query builder tools

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Self-Join Removal

Self Join Elimination

. == PG16
.025 . PG17
= PG18
0.020
2
b=}
g 0.015
S o,
3
g
3
£
£ 0.010
0.005
50010 50010 00008
0.000
S 10 Gmp'®

Self-Join Removal: Up to 5x faster in PG18

Roberto Mello PostgreSQl

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Hash Join & GROUP BY Improvements

@ Hash Right Semi Join support

e Planner can now choose which table to hash based on size
e Previously constrained to hashing inner table only
@ 40% reduction in memory usage for large datasets

@ JIT-compiled hash value generation

e Hashing for GROUP BY and hashed subplans
e Enables JIT compilation of hash values
o Faster hash value computation during execution

Improved performance and reduced memory for hash joins, GROUP BY, EXCEPT,
and subplan hash lookups

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

Hash Join & GROUP BY: Real-World Example

Query Pattern: Semi-join with GROUP BY aggregation

-- Find flights with at least one ticket sold
SELECT f.flight_id, f.flight_no, COUNT(DISTINCT tf.ticket_no)
FROM flights f
WHERE EXISTS (
SELECT 1 FROM ticket_flights tf WHERE tf.flight_id = f.flight_id

)
GROUP BY f.flight_id, f.flight_no;

PG17: Uses Hash Semi Join, must hash larger ticket_flights table (2.3s)
PG18: Uses Hash Right Semi Join, hashes smaller f1ights table (<1s)

50%+ faster with 40% less memory usage

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

EXPLAIN: What’s New

@ Automatic BUFFERS in EXPLAIN ANALYZE

© EXPLAIN ANALYZE VERBOSE shows hardware stats (CPU, Memory, I/O)
© Per connection stats on 1/0 and WAL utilization

© Better observability by default

© Easier performance troubleshooting

EXPLAIN ANALYZE SELECT * FROM orders WHERE value < 100;

Seq Scan on orders (cost=0.00..1834.00 rows=98.3 ...)
Filter: (value < 100)
Rows Removed by Filter: 9902
Buffers: shared hit=834 read=0

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

EXPLAIN: What’s New

=# explain (analyze,wal,timing,memory,verbose)
-# select * from uuid_v4_test where id <= '00036a6a-6218-4f4b-8bfa-fd2dce5e1443"
-# and id >= '00021dd6-79de-426e-809d-440a0160504d' order by id;

QUERY PLAN

Index Scan using uuid_v4_test_pkey on public.uuid_v4_test (cost=0.43..2.65 rows=1 width=90)
(actual time=0.023..0.278 rows=182.00 loops=1)
Output: id, user_id, event_type, data, created_at
Index Cond: ((uuid_v4_test.id <= '00036a6a-6218-4f4b-8bfa-fd2dce5e1443': :uuid) AND
(uuid_v4_test.id >= '00021dd6-79de-426e-809d-440a0160504d " : :uuid))

Index Searches: 1
Buffers: shared hit=186

Query Identifier: 5337184330030628219

Planning:
Buffers: shared hit=8
Memory: used=15kB allocated=32kB

Planning Time: 0.122 ms

Execution Time: 0.299 ms

Roberto Mello PostgreSQL Conference Europe 2025

Optimizer Improvements
Self-join Removal

Query Planning & Observability Hash Join & GROUP BY
EXPLAIN Improvements

EXPLAIN: What’s New

explain (analyze,verbose,memory,wal) insert into foo (i) values (generate_series(1,100));
QUERY PLAN

Insert on public.foo (cost=0.00..0.52 rows=0 width=0) (actual time=0.153..0.154 rows=0.00 loops=1)
Buffers: shared hit=99 dirtied=1 written=1
I/0 Timings: shared write=0.017
WAL: records=100 bytes=5900
-> ProjectSet (cost=0.00..0.52 rows=100 width=4) (actual time=0.004..0.011 rows=100.00 loops=1)
Output: generate_series(1, 100)
-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.002..0.002 rows=1.00 loops=1)
Query Identifier: 2114580784842162758
Planning:
Memory: used=10kB allocated=16kB
Planning Time: 0.273 ms
Execution Time: 0.172 ms

Roberto Mello PostgreSQL Conference Europe 2025

uuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

UUID v7: Time-Ordered UUIDs
Problems with UUID v4:

@ Completely random values

@ Poor index locality

@ Index bloat and fragmentation

@ Slower inserts as table grows

UUID v7 (RFC 9562):
@ First 48 bits: timestamp (millisecond precision)
@ Remaining bits: random
@ Time-ordered like SERIAL, but globally unique
o Better B-tree performance, with less disk use

Roberto Mello PostgreSQL Conference Europe 2025

uuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

UUID v7: Usage

-- New function for UUID v7

CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT uuidv7(),
email TEXT,
created_at TIMESTAMP DEFAULT NOW()

)

-- Inserts are naturally ordered by time
INSERT INTO users (email)
VALUES ('user@example.com');

Benefits:
@ Smaller indexes (better locality)
@ Can infer creation time from UUID

Roberto Mello PostgreSQL Conference Europe 2025

UuID v7
Statistics Retention

GitLab
Additional Features & Real Applications

UUID v7: Index Size

UUID v7 vs v4: Primary Key Index Size
(PostgreSQL 18, 10M rows)

I
S
=1

391 MB
22.9% smaller

Index Size (MB)

-) N} w w
o =3 a S a
=3 S S S =3

-
=)
=1

5
=]

UUID v4 UUID v7

Roberto Mello ostgreSQL Conference Europe 2025

UuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

UUID v7: Range Query Performance

UUID v7 vs vd: Range Query Performance

(Lower is Better)
= UUD v
== U vy

\erage Time (ms)

- -
0
ore

1000
gaue’
onder ®

(e 407
an®

Faster for larger result sets
@ Better index locality improves sequential scans
@ Most beneficial for queries returning many rows
@ Excellent for time-based queries

Roberto Mello PostgreSQL Conference Europe

UuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

UUID v7: JOIN Performance

UUID v7 vs v4: JOIN Performance
(Lower is Better)

1062.5 ms

25.4% slower
1000

Average Time (ms)

UUID v4 UUID v7

@ Best for insert-heavy, time-series data
SELECT e.id, e.event_type, d.score @ Less ideal for JOIN-heavy OLTP workloads
FROM uuid_v7_test e JOIN uuid_v7_test_details d
ON e.id = d.event_id LIMIT 1000;

Roberto Mello onference Europe

UuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

Statistics Retention Across Upgrades

The Problem:
@ Major version upgrades lose optimizer statistics
@ First queries after upgrade are slow
@ Must wait for autovacuum to collect stats
@ Production vs staging plan differences

PG18
@ New pg dump --statistics-only
@ Functions to restore statistics
@ Preserve query plans across upgrades
@ Copy production stats to dev/test

Roberto Mello PostgreSQL Conference Europe 2025

uuID v7

Statistics Retention
GitLab

Discourse

Additional Features & Real Applications

Statistics Retention: Usage

pg_dump --statistics-only mydb > stats.sql
SELECT * FROM pg_catalog.pg_restore_relation_stats(

'version', '180000'::integer,
'schemaname', 'public',
'relname', 'async_io_test',

'relpages', '80777'::integer,
'reltuples', '1.004389e+06'::real,
'relallvisible', '80777'::integer,
'relallfrozen', '3768'::integer s

SELECT * FROM pg_catalog.pg_restore_attribute_stats(

'version', '180000'::integer,
'schemaname', 'public',
'relname', 'async_io_test',
'attname', 'created_at',

'inherited', 'f'
'null_frac', '0'
'avg_width', '8'::integer,

'n_distinct', '116'::real,

'most_common_vals', '{"2025-10-15 02:54:23.838692","2025-10-15 02:54:29.491851", .
'most_common_freqs', '{0.103533335,0.1018,0.10146666,0.1003,0.09996667,0.09893333,
'histogram_bounds', '{"2025-10-15 02:55:00.91417","2025-10-15 02:55:15.533473",

Roberto Mello PostgreSQL Conference Europe 2025

UuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

GitLab

Gitlab - Query Performance Metrics

Query Count Total Query Execution Time 100 99,96 Buffer Caghg.Efficiency g9 959
m b AT -,
14000 — " 99% threshold
12000 3 20000 _ 80
£ g
£ 10000 < 3
£ € 15000 2 60
£ 000 £ g
=4 2 ! &
S £ o7 g
E o £ 10000
E 6000 g R0
e < 2
1000 g 4
€ 5000 © 2
2000
0 0 0
PG16 PG17 PG18 PG16 PG17 PG18 PG16 PG17 PG18

@ Total execution time: 54% faster (PG18: 10.7s vs PG16: 21.5s)

@ Query count: Consistent across versions (~14,400 queries)

Roberto Mello onference Europe

UuID v7
Statistics Retention

GitLab
Additional Features & Real Applications Discourse

Discourse

Discourse - Query Performance Metrics

Query Count Total Query ‘Ei)sicution Time 100 90,115, Buffer Caghg Efficiency 4 .
573 1750 1 -~ 99% threshold
8000
2 1500 1430 _ 80
8 g
8 6000 o 1250 s
g E 2 60
=] 1000 4
< [=
g 4000 S 750 %
=] &)
& 3 £
£ s00 3
2000 e 20
250
0 0 0
PG16 PG17 PG18 PG16 PG17 PG18 PG16 PG17 PG18

@ Total execution time: 14% faster (PG18: 1.43s vs PG16: 1.62s)

@ Query count: Consistent across versions (~9,000 queries)

Roberto Mello stgreSQL Conference Europe

Real-World Use Cases
Key Takeaways
Resources

Summary & Conclusion

Real-World Use Cases

Who Benefits Most?
@ Analytics Workloads: Async I/O, optimizer improvements
@ SaaS Applications: UUID v7, skip scans
@ E-commerce: Parallel GIN, optimizer
@ Content Platforms: Full-text search (parallel GIN)
@ Multi-tenant Apps: Skip scans on tenant.id indexes

Roberto Mello PostgreSQL Conference Europe 2025

Real-World Use Cases
Key Takeaways

Resources

Summary & Conclusion

Key Takeaways

@ PostgreSQL 18 brings measurable performance gains
© Improvements are mostly automatic
© Async I/O: foundational infrastructure-level improvement

© Skip Scan: acceptable performance for multi-column indexes and
less-frequent queries

© Parallel GIN: faster index builds
© Optimizer: smarter query planning

Roberto Mello PostgreSQL Conference Europe 2025

Real-World Use Cases
Key Takeaways
Resources

Summary & Conclusion

Additional Resources

@ PostgreSQL 18 Release Notes:
https://www.postgresql.org/docs/current/release-18.html

@ Tomas Vondra at https://vondra.me/posts/tuning-aio-in-postgresql-18/
@ Async I/O Deep Dive: https://pganalyze.com/blog/postgres-18-async-io

@ Crunchy Data Blog:
https://crunchydata.com/blog/get-excited-about-postgres-18

@ Jonathan Katz, Peter Geoghegan: https://www.slideshare.net/slideshow/
postgresql-18-a-whirlwind-tour-of-features/283259854

Roberto Mello PostgreSQL Conference Europe 2025

https://www.postgresql.org/docs/current/release-18.html
https://vondra.me/posts/tuning-aio-in-postgresql-18/
https://pganalyze.com/blog/postgres-18-async-io
https://crunchydata.com/blog/get-excited-about-postgres-18
https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854
https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854

Real-World Use Cases
Key Takeaways

Resources

Summary & Conclusion

Questions

Feedback: These slides:

[m]ignraL:

Roberto Mello PostgreSQL Conference Europe 2025

	Introduction
	About
	Crunchy Data and Snowflake
	Talk Overview
	PostgreSQL 18 Overview

	Asynchronous I/O
	Understanding the Problem
	Async I/O Solution
	Configuration and Performance

	Index Improvements
	B-tree Skip Scan
	Parallel GIN Index Creation

	Query Planning & Observability
	Optimizer Improvements
	Self-join Removal
	Hash Join & GROUP BY
	EXPLAIN Improvements

	Additional Features & Real Applications
	UUID v7
	Statistics Retention
	GitLab
	Discourse

	Summary & Conclusion
	Real-World Use Cases
	Key Takeaways
	Resources

