
Boosting Typical Query Patterns
PostgreSQL 18’s Performance Enhancements

Roberto Mello
roberto.mello@gmail.com

Snowflake
October 22, 2025

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

About
Crunchy Data and Snowflake
Talk Overview

Roberto Mello
Senior Solutions Engineer

roberto.mello@gmail.com

Linkedin: robertomello

X: robertobmello

25+ years experience with PostgreSQL and
databases

Previous: Principal Solutions Architect @ Crunchy
Data
Managed DBA and DevOps teams
BS/MS Computer Science, Utah State University

Personal

Brazilian (Manaus) expatriate in Utah
Interests: more computer stuff
Photography, Snowboarding, Austrian Economics

Roberto Mello PostgreSQL Conference Europe 2025 2/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

About
Crunchy Data and Snowflake
Talk Overview

https://www.crunchydata.com/blog/crunchy-data-joins-snowflake

Roberto Mello PostgreSQL Conference Europe 2025 3/43

https://www.crunchydata.com/blog/crunchy-data-joins-snowflake

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

About
Crunchy Data and Snowflake
Talk Overview

Talk Overview
PostgreSQL 18 introduces significant performance improvements

Foundational changes and real-world query patterns

What We’ll Cover:
1 Asynchronous I/O subsystem
2 B-tree skip scans
3 Parallel GIN index creation
4 Query optimizer improvements
5 EXPLAIN enhancements
6 UUID v7 performance
7 Real-world Applications

Roberto Mello PostgreSQL Conference Europe 2025 4/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Traditional I/O

Traditional PostgreSQL I/O:

Backend: "I need page 1000"

Kernel: [reads page 1000]

Backend: [waits...]

Kernel: "Here's page 1000"

Backend: "Thanks! Now I need page 1001"

Kernel: [reads page 1001]

Backend: [waits...]

Inefficient because:

One request at a time

Backend idle while
waiting for I/O

Can’t batch or
parallelize requests

Underutilizes modern
storage (NVMe, SSD)

Postgres 17 paved the way with the introduction of read stream and vectored I/O APIs,
internal abstractions. See Andres Freund https://youtu.be/qX50xrHwQa4

Roberto Mello PostgreSQL Conference Europe 2025 5/43

https://youtu.be/qX50xrHwQa4

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O

PostgreSQL 18 Async I/O:

Backend: "I need pages 1000, 1001, 1002, 1003..."

Kernel: [queues all requests]

Backend: [continues other work]

Kernel: [returns pages as ready]

Backend: [processes completed I/O]

Benefits:

Batch multiple I/O
requests

Kernel can optimize
request ordering

Better utilization of
parallel storage

Backend does useful
work while waiting

Roberto Mello PostgreSQL Conference Europe 2025 6/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O: Configuration
GUC Parameters:
17+: Control I/O batching (blocks of 8kb)

io_combine_limit = 16 # requests per batch (128kb default)

18: I/O method selection

io_method = 'worker' # default, usually performs better.

18: Largest I/O size in operations that combine I/O (blocks of 8kb, default is 16 = 128kB)

silently limits io_combine_limit. Typically 1MB on Unix and 128kB on Windows.

io_max_combine_limit = 16

Operations Most Benefitted:
Sequential scans of large tables
Bitmap heap scans (multi-index queries)
VACUUM operations

Roberto Mello PostgreSQL Conference Europe 2025 7/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O: Benchmark Results

Key Findings:
Sequential scans: 15-25% faster
Bitmap heap scans: 10-18% faster
VACUUM: 20-300% faster

Roberto Mello PostgreSQL Conference Europe 2025 8/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O: Real-World Impact

Example: Analytics Query

SELECT category, COUNT(*), AVG(amount)

FROM large_orders

WHERE created_at >= '2025-01-01'

GROUP BY category;

PG16: 12.3 seconds (sequential scan)
PG18: 9.8 seconds (sequential scan with async I/O)

20% improvement without code changes

Roberto Mello PostgreSQL Conference Europe 2025 9/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O: Tuning for Production
TID PRIO USER DISK READ DISK WRITE> COMMAND

605556 be/4 999 0.00 B/s 16.73 M/s postgres: postgres postgres 10.10.0.208(50254) VACUUM

604968 be/4 999 0.00 B/s 63.44 K/s postgres: walwriter

604957 be/4 999 66.72 M/s 0.00 B/s postgres: io worker 1

604958 be/4 999 102.11 M/s 0.00 B/s postgres: io worker 0

604959 be/4 999 46.70 M/s 0.00 B/s postgres: io worker 2

604960 be/4 999 23.00 M/s 0.00 B/s postgres: io worker 4

604961 be/4 999 33.70 M/s 0.00 B/s postgres: io worker 3

io_method = worker # default: pool of I/O worker processes

io_uring: Linux-specific async I/O queues

sync: traditional synchronous I/O (backwards compatibility)

io_workers = 3 # Default too low for larger systems

Probably: set to approximately 1/4 of total CPU cores

io_max_combine_limit = 16 # limits io_combine_limit.

typical max: Unix 128 (1 MB), Windows 16 (128 kB)

io_combine_limit = 16 # requests per batch (128kb default)

raise with io_max_combine_limit to increase the I/O size

1See: Tomas Vondra, https://vondra.me/posts/tuning-aio-in-postgresql-18/
Roberto Mello PostgreSQL Conference Europe 2025 10/43

https://vondra.me/posts/tuning-aio-in-postgresql-18/

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O: Performance Comparison

Query Timing by I/O Method1. Benchmark: Ryzen 9900X (12 cores/24 threads), 4x NVMe SSDs (RAID0)

1See: Tomas Vondra, https://vondra.me/posts/tuning-aio-in-postgresql-18/
Roberto Mello PostgreSQL Conference Europe 2025 11/43

https://vondra.me/posts/tuning-aio-in-postgresql-18/

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Understanding the Problem
Async I/O Solution
Configuration and Performance

Async I/O: Tuning Recommendations
1 Keep default io method = worker

Best compatibility across workloads. io uring is Linux-specific

2 Increase io workers based on cores

Start with 1/4 of CPU cores. Monitor and adjust based on workload

3 Test with your workload

Performance varies by query patterns. Bitmap scans benefit most

4 Watch out for

Signal overhead between backends and workers
File descriptor limits
I/O bandwidth saturation

Roberto Mello PostgreSQL Conference Europe 2025 12/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Skip Scan
Acceptable performance with seldom-run queries that might not require a dedicated index.

CREATE INDEX idx_country_user

ON orders(country, user_id);

-- Query on second column only

SELECT * FROM orders WHERE user_id = 12345;

Before PG18:
Index not usable (query doesn’t start with country)
Falls back to sequential scan
Slow on large tables
Advice: ”Create a single-column index on user id”

Roberto Mello PostgreSQL Conference Europe 2025 13/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Skip Scan: The Solution
Postgres 18 treats the index as a ”series of logical subindexes”

Planner recognizes opportunity to use multi-column index
”Skips” over distinct values of leading column
For each distinct country, searches for user id

Most effective when leading column has low cardinality

Example:
10 distinct countries (low cardinality)
1M distinct user ids (high cardinality)
Skip scan does 10 targeted index searches
Much faster than sequential scan

Roberto Mello PostgreSQL Conference Europe 2025 14/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Skip Scan
PostgreSQL 16: (without single-column index on created at)
EXPLAIN (ANALYZE, TIMING) SELECT id, project_id, created_at FROM skip_scan_test

WHERE created_at > NOW() - INTERVAL '30 days' ORDER BY created_at DESC LIMIT 100;

Limit (cost=93265.53..93277.50 rows=100 width=20) (actual time=455.743..466.308 rows=100 loops=1)

-> Gather Merge (cost=93265.53..135927.94 rows=356308 width=20) (actual time=455.741..466.277 rows=100 loops=1)

Workers Planned: 4

Workers Launched: 4

-> Sort (cost=92265.47..92488.16 rows=89077 width=20) (actual time=450.614..450.619 rows=90 loops=5)

Sort Key: created_at DESC

Sort Method: top-N heapsort Memory: 36kB

Worker 0: Sort Method: top-N heapsort Memory: 36kB

Worker 1: Sort Method: top-N heapsort Memory: 37kB

Worker 2: Sort Method: top-N heapsort Memory: 37kB

Worker 3: Sort Method: top-N heapsort Memory: 37kB

-> Parallel Seq Scan on skip_scan_test (cost=0.00..88861.01 rows=89077 width=20) (actual time=0.024..440.729 rows=69926 loops=5)

Filter: (created_at > (now() - '30 days'::interval))

Rows Removed by Filter: 930074

Planning Time: 0.116 ms

Execution Time: 466.354 ms

Roberto Mello PostgreSQL Conference Europe 2025 15/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Skip Scan
PostgreSQL 18: (uses composite index with skip scan)

QUERY PLAN

--

Limit (cost=78397..78409 rows=100) (actual time=151..173 rows=100)

-> Gather Merge (cost=78397..122040 rows=364500)

Workers Planned: 4

Workers Launched: 4

-> Sort (cost=77397..77624 rows=91125)

-> Parallel Bitmap Heap Scan on skip_scan_test

Recheck Cond: (created_at > ...)

-> Bitmap Index Scan on idx_skip_scan_composite

Index Cond: (created_at > ...)

Index Searches: 1001

Execution Time: 173.719 ms

Faster using composite index (project id, created at) via skip scan
Roberto Mello PostgreSQL Conference Europe 2025 16/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Skip Scan: Benchmark Results

Biggest improvement with low-cardinality leading column
Effective for narrow range queries on composite indexes
Best for queries on non-leading columns with selective filters

Roberto Mello PostgreSQL Conference Europe 2025 17/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Parallel GIN: Background

GIN Indexes: Generalized Inverted Index
Used for arrays, JSONB, full-text search
Can be slow to build on large tables (higher maintenance work mem helps)

Postgres 18
Parallel index builds available for GIN, in addition to B-tree, BRIN

Roberto Mello PostgreSQL Conference Europe 2025 18/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Parallel GIN: Configuration
Configuration:

SET max_parallel_maintenance_workers = 4;

-- Create index (automatically uses parallel workers)

CREATE INDEX idx_tags ON posts USING GIN(tags);

TID PRIO< USER DISK READ DISK WRITE COMMAND

604957 be/4 999 377.75 K/s 0.00 B/s postgres: io worker 1

604958 be/4 999 47.22 K/s 0.00 B/s postgres: io worker 0

604959 be/4 999 39.35 K/s 0.00 B/s postgres: io worker 2 604960 be/4 999 125.92 K/s 0.00 B/s postgres: io worker 4 604961 be/4 999 377.75 K/s 0.00 B/s postgres: io worker 3

604962 be/4 999 31.48 K/s 31.48 K/s postgres: checkpointer

604965 be/4 999 15.74 K/s 7.87 K/s postgres: checkpointer 610355 be/4 999 31.48 K/s 0.00 B/s postgres: postgres postgres 10.10.0.208(56470) CREATE INDEX 610509 be/4 999 125.92 K/s 0.00 B/s postgres: parallel worker for PID 2032

610510 be/4 999 15.74 K/s 25.95 M/s postgres: parallel worker for PID 2032

610511 be/4 999 129.85 K/s 0.00 B/s postgres: parallel worker for PID 2032

610512 be/4 999 7.87 K/s 0.00 B/s postgres: parallel worker for PID 2032 610513 be/4 999 251.84 K/s 0.00 B/s postgres: parallel worker for PID 2032

Roberto Mello PostgreSQL Conference Europe 2025 19/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

B-tree Skip Scan
Parallel GIN Index Creation

Parallel GIN: Benchmark Results

Results (8-core test system):
4 workers: Best performance for JSONB & Array indexes
8 workers: Performance degradation (12-25% slower)

Important: Set max parallel maintenance workers ≤ CPU cores

Roberto Mello PostgreSQL Conference Europe 2025 20/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Multiple Enhancements

1 Hash Join & GROUP BY improvements
2 IN (VALUES) → = ANY transformation
3 OR clauses → array operations for indexable queries
4 Unnecessary self-join removal
5 Speed up of INTERSECT/EXCEPT, window aggregates, view column aliases
6 SELECT DISTINCT internal reordering to avoid sorting

Mostly no query changes needed.

Roberto Mello PostgreSQL Conference Europe 2025 21/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: IN (VALUES) Performance
Postgres 18 adds nbtree skip scan building on Postgres 17 work on IN() / = ANY()

condition index scans

items that are close together (1,2,3) or far apart (10 000, 20 000)

Supports complex combinations of IN() conditions, = conditions, as well as <, >,

<=, => conditions

Only reads index leaf pages that might have matches
explain (analyze, costs off, timing off)

select * from tab

where a in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and b = 5_000;

QUERY PLAN

Index Only Scan using multicol on tab (rows=10.00 loops=1)

Index Cond: ((a = ANY ('{1,2,3,4,5,6,7,8,9,10}'::integer[])) AND (b = 5000))

Heap Fetches: 0

Index Searches: 10

Buffers: shared hit=31

Planning Time: 0.028 ms

Execution Time: 0.022 ms

1see https://www.slideshare.net/slideshow/

postgresql-18-a-whirlwind-tour-of-features/283259854

Roberto Mello PostgreSQL Conference Europe 2025 22/43

https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854
https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: OR to Array
Rewrite OR conditions to better use indexes

SELECT * FROM products

WHERE category = 'electronics'

OR category = 'clothing'

OR category = 'food';

PG18 Optimization:

SELECT * FROM products

WHERE category = ANY (ARRAY['electronics', 'clothing', 'food']);

Can use bitmap index scans more efficiently - reports of 100x improvement.
Roberto Mello PostgreSQL Conference Europe 2025 23/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Self-Join Removal
SELECT t1.*

FROM orders t1 JOIN orders t2 ON t1.id = t2.id

WHERE t1.status = 'completed';

Postgres 18:

Detects redundant self-join and removes t2 table

Executes as simple SELECT * FROM orders WHERE status = ’completed’

Common in:

ORM-generated queries

View definitions

Query builder tools

Roberto Mello PostgreSQL Conference Europe 2025 24/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Self-Join Removal

Self-Join Removal: Up to 5x faster in PG18

Roberto Mello PostgreSQL Conference Europe 2025 25/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Optimizer: Hash Join & GROUP BY Improvements
1 Hash Right Semi Join support

Planner can now choose which table to hash based on size
Previously constrained to hashing inner table only
40% reduction in memory usage for large datasets

2 JIT-compiled hash value generation
Hashing for GROUP BY and hashed subplans
Enables JIT compilation of hash values
Faster hash value computation during execution

Improved performance and reduced memory for hash joins, GROUP BY, EXCEPT,
and subplan hash lookups

Roberto Mello PostgreSQL Conference Europe 2025 26/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

Hash Join & GROUP BY: Real-World Example
Query Pattern: Semi-join with GROUP BY aggregation

-- Find flights with at least one ticket sold

SELECT f.flight_id, f.flight_no, COUNT(DISTINCT tf.ticket_no)

FROM flights f

WHERE EXISTS (

SELECT 1 FROM ticket_flights tf WHERE tf.flight_id = f.flight_id

)

GROUP BY f.flight_id, f.flight_no;

PG17: Uses Hash Semi Join, must hash larger ticket flights table (2.3s)
PG18: Uses Hash Right Semi Join, hashes smaller flights table (<1s)

50%+ faster with 40% less memory usage

Roberto Mello PostgreSQL Conference Europe 2025 27/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

EXPLAIN: What’s New
1 Automatic BUFFERS in EXPLAIN ANALYZE

2 EXPLAIN ANALYZE VERBOSE shows hardware stats (CPU, Memory, I/O)
3 Per connection stats on I/O and WAL utilization
4 Better observability by default
5 Easier performance troubleshooting

EXPLAIN ANALYZE SELECT * FROM orders WHERE value < 100;

Seq Scan on orders (cost=0.00..1834.00 rows=98.3 ...)

Filter: (value < 100)

Rows Removed by Filter: 9902

Buffers: shared hit=834 read=0

Roberto Mello PostgreSQL Conference Europe 2025 28/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

EXPLAIN: What’s New

=# explain (analyze,wal,timing,memory,verbose)

-# select * from uuid_v4_test where id <= '00036a6a-6218-4f4b-8bfa-fd2dce5e1443'

-# and id >= '00021dd6-79de-426e-809d-440a0160504d' order by id;

QUERY PLAN

--

Index Scan using uuid_v4_test_pkey on public.uuid_v4_test (cost=0.43..2.65 rows=1 width=90)

(actual time=0.023..0.278 rows=182.00 loops=1)

Output: id, user_id, event_type, data, created_at

Index Cond: ((uuid_v4_test.id <= '00036a6a-6218-4f4b-8bfa-fd2dce5e1443'::uuid) AND

(uuid_v4_test.id >= '00021dd6-79de-426e-809d-440a0160504d'::uuid))

Index Searches: 1

Buffers: shared hit=186

Query Identifier: 5337184330030628219

Planning:

Buffers: shared hit=8

Memory: used=15kB allocated=32kB

Planning Time: 0.122 ms

Execution Time: 0.299 ms

Roberto Mello PostgreSQL Conference Europe 2025 29/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Optimizer Improvements
Self-join Removal
Hash Join & GROUP BY
EXPLAIN Improvements

EXPLAIN: What’s New

explain (analyze,verbose,memory,wal) insert into foo (i) values (generate_series(1,100));

QUERY PLAN

Insert on public.foo (cost=0.00..0.52 rows=0 width=0) (actual time=0.153..0.154 rows=0.00 loops=1)

Buffers: shared hit=99 dirtied=1 written=1

I/O Timings: shared write=0.017

WAL: records=100 bytes=5900

-> ProjectSet (cost=0.00..0.52 rows=100 width=4) (actual time=0.004..0.011 rows=100.00 loops=1)

Output: generate_series(1, 100)

-> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.002..0.002 rows=1.00 loops=1)

Query Identifier: 2114580784842162758

Planning:

Memory: used=10kB allocated=16kB

Planning Time: 0.273 ms

Execution Time: 0.172 ms

Roberto Mello PostgreSQL Conference Europe 2025 30/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

UUID v7: Time-Ordered UUIDs
Problems with UUID v4:

Completely random values
Poor index locality
Index bloat and fragmentation
Slower inserts as table grows

UUID v7 (RFC 9562):
First 48 bits: timestamp (millisecond precision)
Remaining bits: random
Time-ordered like SERIAL, but globally unique
Better B-tree performance, with less disk use

Roberto Mello PostgreSQL Conference Europe 2025 31/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

UUID v7: Usage
-- New function for UUID v7

CREATE TABLE users (

id UUID PRIMARY KEY DEFAULT uuidv7(),

email TEXT,

created_at TIMESTAMP DEFAULT NOW()

);

-- Inserts are naturally ordered by time

INSERT INTO users (email)

VALUES ('user@example.com');

Benefits:

Smaller indexes (better locality)

Can infer creation time from UUID

Roberto Mello PostgreSQL Conference Europe 2025 32/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

UUID v7: Index Size

Roberto Mello PostgreSQL Conference Europe 2025 33/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

UUID v7: Range Query Performance

Faster for larger result sets
Better index locality improves sequential scans
Most beneficial for queries returning many rows
Excellent for time-based queries

Roberto Mello PostgreSQL Conference Europe 2025 34/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

UUID v7: JOIN Performance

SELECT e.id, e.event_type, d.score

FROM uuid_v7_test e JOIN uuid_v7_test_details d

ON e.id = d.event_id LIMIT 1000;

Best for insert-heavy, time-series data

Less ideal for JOIN-heavy OLTP workloads

Roberto Mello PostgreSQL Conference Europe 2025 35/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

Statistics Retention Across Upgrades
The Problem:

Major version upgrades lose optimizer statistics
First queries after upgrade are slow
Must wait for autovacuum to collect stats
Production vs staging plan differences

PG18
New pg dump --statistics-only

Functions to restore statistics
Preserve query plans across upgrades
Copy production stats to dev/test

Roberto Mello PostgreSQL Conference Europe 2025 36/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

Statistics Retention: Usage
pg_dump --statistics-only mydb > stats.sql
SELECT * FROM pg_catalog.pg_restore_relation_stats(

'version', '180000'::integer,

'schemaname', 'public',

'relname', 'async_io_test',

'relpages', '80777'::integer,

'reltuples', '1.004389e+06'::real,

'relallvisible', '80777'::integer,

'relallfrozen', '3768'::integer);

SELECT * FROM pg_catalog.pg_restore_attribute_stats(

'version', '180000'::integer,

'schemaname', 'public',

'relname', 'async_io_test',

'attname', 'created_at',

'inherited', 'f'::boolean,

'null_frac', '0'::real,

'avg_width', '8'::integer,

'n_distinct', '116'::real,

'most_common_vals', '{"2025-10-15 02:54:23.838692","2025-10-15 02:54:29.491851", ...

'most_common_freqs', '{0.103533335,0.1018,0.10146666,0.1003,0.09996667,0.09893333, ...

'histogram_bounds', '{"2025-10-15 02:55:00.91417","2025-10-15 02:55:15.533473", ...

Roberto Mello PostgreSQL Conference Europe 2025 37/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

GitLab

Total execution time: 54% faster (PG18: 10.7s vs PG16: 21.5s)

Query count: Consistent across versions (∼14,400 queries)

Roberto Mello PostgreSQL Conference Europe 2025 38/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

UUID v7
Statistics Retention
GitLab
Discourse

Discourse

Total execution time: 14% faster (PG18: 1.43s vs PG16: 1.62s)

Query count: Consistent across versions (∼9,000 queries)

Roberto Mello PostgreSQL Conference Europe 2025 39/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Real-World Use Cases
Key Takeaways
Resources

Real-World Use Cases

Who Benefits Most?
Analytics Workloads: Async I/O, optimizer improvements
SaaS Applications: UUID v7, skip scans
E-commerce: Parallel GIN, optimizer
Content Platforms: Full-text search (parallel GIN)
Multi-tenant Apps: Skip scans on tenant id indexes

Roberto Mello PostgreSQL Conference Europe 2025 40/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Real-World Use Cases
Key Takeaways
Resources

Key Takeaways

1 PostgreSQL 18 brings measurable performance gains
2 Improvements are mostly automatic
3 Async I/O: foundational infrastructure-level improvement
4 Skip Scan: acceptable performance for multi-column indexes and

less-frequent queries
5 Parallel GIN: faster index builds
6 Optimizer: smarter query planning

Roberto Mello PostgreSQL Conference Europe 2025 41/43

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Real-World Use Cases
Key Takeaways
Resources

Additional Resources

PostgreSQL 18 Release Notes:
https://www.postgresql.org/docs/current/release-18.html

Tomas Vondra at https://vondra.me/posts/tuning-aio-in-postgresql-18/

Async I/O Deep Dive: https://pganalyze.com/blog/postgres-18-async-io

Crunchy Data Blog:
https://crunchydata.com/blog/get-excited-about-postgres-18

Jonathan Katz, Peter Geoghegan: https://www.slideshare.net/slideshow/
postgresql-18-a-whirlwind-tour-of-features/283259854

Roberto Mello PostgreSQL Conference Europe 2025 42/43

https://www.postgresql.org/docs/current/release-18.html
https://vondra.me/posts/tuning-aio-in-postgresql-18/
https://pganalyze.com/blog/postgres-18-async-io
https://crunchydata.com/blog/get-excited-about-postgres-18
https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854
https://www.slideshare.net/slideshow/postgresql-18-a-whirlwind-tour-of-features/283259854

snowflake-white

Introduction
Asynchronous I/O

Index Improvements
Query Planning & Observability

Additional Features & Real Applications
Summary & Conclusion

Real-World Use Cases
Key Takeaways
Resources

Questions

Feedback: These slides:

Roberto Mello PostgreSQL Conference Europe 2025 43/43

	Introduction
	About
	Crunchy Data and Snowflake
	Talk Overview
	PostgreSQL 18 Overview

	Asynchronous I/O
	Understanding the Problem
	Async I/O Solution
	Configuration and Performance

	Index Improvements
	B-tree Skip Scan
	Parallel GIN Index Creation

	Query Planning & Observability
	Optimizer Improvements
	Self-join Removal
	Hash Join & GROUP BY
	EXPLAIN Improvements

	Additional Features & Real Applications
	UUID v7
	Statistics Retention
	GitLab
	Discourse

	Summary & Conclusion
	Real-World Use Cases
	Key Takeaways
	Resources

