
Table Repacking, done right

Antonín Houska – Postgres developer, CYBERTEC
Álvaro Herrera – Postgres developer, EDB

Postgres Conference Europe 2025
Riga, Latvia

23-24 October 2025

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://cybertec.at/


Antonín Houska

• Antonín Houska, CYBERTEC
• ah@cybertec.at
• Postgres contributor since 2012
• Working as a Postgres developer for CYBERTEC

since 2012

mailto:ah@cybertec.at
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Álvaro Herrera

• Álvaro Herrera, EDB
• alvherre@kurilemu.de
• Postgres contributor since 2002
• Working as a Postgres developer for EDB since

2012

mailto:alvherre@kurilemu.de
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Talk structure

1 The problem: table bloat
2 The historical solution: VACUUM and friends
3 Third-party solutions

• pg_reorg
• pg_repack
• pg_squeeze

4 Non-concurrent REPACK
5 REPACK CONCURRENTLY

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Table bloat

• Comes from non-overwriting MVCC implementation
• Non-overwriting: old versions of updated tuples are not

immediately removable
• vacuuming1 takes care of them afterwards

1And HOT-pruning.

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Table bloat: other databases

An overwriting storage manager might use a “rollback segment”

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Table bloat: other databases

As the table is updated, old tuples versions are moved to the
rollback segment. The table doesn’t need later cleanup.

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


A rollback segment?

• requires handling of disk space for it
• and later cleanup
• notably: rollbacks are expensive
• and is more difficult to implement
• Postgres tried: see zheap
• Not yet achieved!

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


A rollback segment?

• requires handling of disk space for it
• and later cleanup
• notably: rollbacks are expensive
• and is more difficult to implement
• Postgres tried: see zheap
• Not yet achieved!

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Berkeley: Ancient vacuuming technique

some dead tuples dead tuples are
removed

tuples moved to
final locations

tuples in final
locations

table can be
truncated

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


“Lazy” vacuum?

• But this required “access exclusive” lock on the table
• Commit 4046e58c2478: �

Initial implementation of concurrent VACUUM.
Tom Lane

Fri Jul 13 2001, Postgres 7.2

• Doesn’t require access exclusive lock anymore
• Operation can continue
• Disadvantage: surviving tuples cannot be moved across pages
• Old-style vacuum is renamed VACUUM FULL

https://git.postgresql.org/cgit/postgresql.git/commit/?id=4046e58c2478cfcdd4334e2c282b5a42f047ea0b
https://git.postgresql.org/cgit/postgresql.git/commit/?id=4046e58c2478cfcdd4334e2c282b5a42f047ea0b
https://git.postgresql.org/cgit/postgresql.git/commit/?id=4046e58c2478cfcdd4334e2c282b5a42f047ea0b
https://git.postgresql.org/cgit/postgresql.git/commit/?id=4046e58c2478cfcdd4334e2c282b5a42f047ea0b
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


A faster VACUUM FULL?

• Yes! “Let’s use CLUSTER,” someone said
• Commit 946cf229e89f: �

Support rewritten-based full vacuum as VACUUM FULL. Traditional VACUUM
FULL was renamed to VACUUM FULL INPLACE.
Itagaki Takahiro

Wed Jan 6 2010, Postgres 9.0

• In 2010 (Postgres 9.0), VACUUM FULL was changed to use
the CLUSTER code

• How does this work?

https://git.postgresql.org/cgit/postgresql.git/commit/?id=946cf229e89fda779161d707f3ba1f4d3cd024a1
https://git.postgresql.org/cgit/postgresql.git/commit/?id=946cf229e89fda779161d707f3ba1f4d3cd024a1
https://git.postgresql.org/cgit/postgresql.git/commit/?id=946cf229e89fda779161d707f3ba1f4d3cd024a1
https://git.postgresql.org/cgit/postgresql.git/commit/?id=946cf229e89fda779161d707f3ba1f4d3cd024a1
https://git.postgresql.org/cgit/postgresql.git/commit/?id=946cf229e89fda779161d707f3ba1f4d3cd024a1
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


CLUSTER-based VACUUM FULL

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


CLUSTER-based VACUUM FULL

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


VACUUM FULL INPLACE removed

• Commit 0a469c87692d: �
Remove old-style VACUUM FULL (which was known for a little while as
VACUUM FULL INPLACE), along with a boatload of subsidiary code and
complexity. Per discussion, the use case for this method of vacuuming is no
longer large enough to justify maintaining it; not to mention that we don’t wish
to invest the work that would be needed to make it play nicely with Hot Standby.
Tom Lane

Mon Feb 8 2010, Postgres 9.0

https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0a469c87692d15a22eaa69d4b3a43dd8e278dd64
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_reorg

• Created in 2008 by NTT
• https://ossc-db.github.io/pg_reorg/

“The module is developed to be a better alternative of
CLUSTER and VACUUM FULL.”

• Featured in Depesz’s blog in 2011: Bloat Happens
“All in all – it’s a great tool, which does amazing job.”

• Last release was 1.1.9 in 2013
• Pronounced dead in 2020

https://ossc-db.github.io/pg_reorg/pg_reorg.html
https://www.depesz.com/2011/07/06/bloat-happens/
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_repack

• Forked from pg_reorg in 2012
• Implemented in two parts:

• A few server-side SQL and C functions
• Workflow controlled by a client application

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_repack

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_repack

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_repack’s algorithm

• Like VACUUM FULL, it removes bloat by copying the useful data
to a new table, swaps underlying files and drops the new table.

• Exclusive lock is held during the swap, but possibly a bit
longer if the database is very busy.

• Data changes done by applications during the copy are
captured by triggers and written to a “log table”; applied after
the initial copying and index rebuild, right before the swap.

• Multiple backends can be launched to rebuild indexes

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_squeeze

• Started in 2016 (PostgreSQL 9.5)
• Initial motivation: allow pg_repack to be scheduled without

external tools
• Use of dual client/server implementation made this difficult
• Realization: better to reimplement everything with modern

technology
• background worker for scheduling (requires server-only code)
• logical decoding (instead of triggers)
• binary data rather than text
• server API rather than SQL commands

• End result: a complete reimplementation

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_squeeze

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_squeeze

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_squeeze

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_squeeze

• cron-like scheduling. Squeeze table if the portion of bloat
exceeded threshold specified by the DBA.

• Can move tables and indexes to different tablespaces.
• Cannot process unlogged tables.

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


The REPACK command

• REPACK subsumes CLUSTER and VACUUM FULL

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Single-table REPACK forms

• single-table vacuum full:
REPACK (ANALYZE) customers;

• single-table cluster:
REPACK (ANALYZE, VERBOSE) customers USING INDEX cust_pkey;

• single-table cluster using the stored index:
REPACK customers USING INDEX;

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Full-database REPACK forms

• whole-database VACUUM FULL:

REPACK;

• whole-database CLUSTER:

REPACK USING INDEX;

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Concurrent REPACK

REPACK (ANALYZE, CONCURRENTLY) customers USING INDEX tenant_idx;

REPACK (CONCURRENTLY) orders;

REPACK (CONCURRENTLY) USING INDEX;

• This behaves similar to pg_squeeze
• Differences of note:

• Does not unlock the table before requesting the exclusive lock.
• No scheduling – do we need that in core?

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Concurrent REPACK (2)

Advantages over pg_squeeze:
• Should not restrict VACUUM of other tables (problem of

“xmin horizon“)
• MVCC safety (hopefully in PG 19)
• Fully integrated in core

• Very easy to use

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


pg_repackdb

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Future work

• Allow to enable logical decoding on the fly
• Use a background worker for logical decoding
• Better control over repacking multiple tables
• Allow tables/indexes to move tablespace
• Migrate table to another table AM (zheap, OrioleDB, ...)
• Modify ALTER TABLE to rewrite tables using concurrent repack

https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


For Those Listening

• First things first: do you like REPACK?
• Test the patch!

https://commitfest.postgresql.org/patch/5117
• Leave feedback for talk & conference!

https://commitfest.postgresql.org/patch/5117
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/


Thanks for listening!

Questions?

Antonín Houska, CYBERTEC
ah@cybertec.at

https://cybertec.at/

Álvaro Herrera, EDB
alvherre@kurilemu.de
https://enterprisedb.com/

Leave Feedback!

https://cybertec.at/
mailto:ah@cybertec.at
https://cybertec.at/
https://enterprisedb.com/
mailto:alvherre@kurilemu.de
https://enterprisedb.com/
https://www.enterprisedb.com/
https://2025.pgconf.eu/
https://www.cybertec.at/

