
Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers - Friends To Handle With Care

Charles Clavadetscher

Swiss PostgreSQL Users Group

pgDay Paris, 15.03.2018, Paris, France

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 1/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 2/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

In Short About Me

Senior DB Engineer at KOF ETH Zurich
KOF is the Center of Economic Research of the
ETHZ the Swiss Institute of Technology in Zurich, Switzerland
Independent economic research on business cycle tendencies for almost
all sectors
Maintenance of all databases at KOF: PostgreSQL, Oracle, MySQL and
MSSQL Server. Focus on migrating to PostgreSQL
Support in business process re-engineering

Co-founder and treasurer of the SwissPUG, the Swiss PostgreSQL Users Group

Member of the board of the Swiss PGDay

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 3/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 4/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
What is a trigger?

From Wikipedia
(https://en.wikipedia.org/wiki/Database_trigger): A database
trigger is procedural code that is automatically executed in
response to certain events on a particular table or view in a
database.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 5/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
What is a trigger?

Be aware: If you ever created a constraint (index, foreign key,
check, etc.) you have been using triggers.

This presentation is about triggers that are specified explicitly
by a user.

Triggers can be speficied on
Tables

Foreign tables

Views

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 6/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
Create a trigger

Basic workflow
Each time that one of a list of commands tries to change the data of a specified
table

When a whole row is inserted or deleted
When specific or all columns are changed
When other characteristics are met

Execute a function
Do whatever needs to be done
Inform the calling process what to do with the data...
... Returning the data to be acted upon or null or throwing an exception

Before or after the table content is changed

For each row that should be changed or only once for the whole statement

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 7/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
A Trigger Function

CREATE OR REPLACE FUNCTION fname()
RETURNS TRIGGER
AS $$
BEGIN
[...]
END;
$$ LANGUAGE plpgsql;

The function has no parameters.

It returns the type trigger.

Receives its input through special variables NEW and OLD.

The languge for the function’s implementation can be any of the many procedural
languages available as extensions in PostgreSQL.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 8/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
A Trigger Function: Variables

NEW: Data type RECORD; variable holding the new database row for
INSERT/UPDATE operations in row-level triggers. This variable is unassigned in
statement-level triggers and for DELETE operations.

OLD: Data type RECORD; variable holding the old database row for
UPDATE/DELETE operations in row-level triggers. This variable is unassigned in
statement-level triggers and for INSERT operations.

TG_OP: Data type text ; a string of INSERT, UPDATE, DELETE, or TRUNCATE
telling for which operation the trigger was fired.

TG_NAME: Data type name ; variable that contains the name of the trigger
actually fired. Could be helpful for reporting.

TG_TABLE_NAME: Data type name ; the name of the table that caused the trigger
invocation.

TG_TABLE_SCHEMA: Data type name ; the name of the schema of the table that
caused the trigger invocation.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 9/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
Create a trigger

Set up the basic flow
CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }

ON table_name
[FOR [EACH] { ROW | STATEMENT }]
[WHEN (condition)]
EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

INSERT
UPDATE [OF column_name [, ...]]
DELETE
TRUNCATE

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 10/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
Create a trigger

More settings
db=> \h CREATE TRIGGER

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }
ON table_name
[FROM referenced_table_name]
[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
[FOR [EACH] { ROW | STATEMENT }]
[WHEN (condition)]
EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

INSERT
UPDATE [OF column_name [, ...]]
DELETE
TRUNCATE

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 11/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
New In PostgreSQL 10: Transition tables

Keep track of change summaries.
CREATE OR REPLACE FUNCTION public.rows_modified()
RETURNS TRIGGER
AS $$
DECLARE
v_msg TEXT;
v_tot INTEGER;
v_avg_old NUMERIC(6,2);
v_avg_new NUMERIC(6,2);

BEGIN
SELECT count(1),

avg(oldtab.price),
avg(newtab.price)

INTO v_tot, v_avg_old, v_avg_new
FROM newtab, oldtab
WHERE newtab.book_id = oldtab.book_id;

v_msg := ’Modified ’ || v_tot || ’ rows. Old average price: ’ ||
v_avg_old || ’, new average price: ’ || v_avg_new;

INSERT INTO public.books_log (log_f, log_msg)
VALUES (’public.rows_modified()’,v_msg);
RAISE NOTICE ’%’, v_msg;
RETURN NULL;

END;
$$ LANGUAGE plpgsql;

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 12/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Introduction
New In PostgreSQL 10: Transition tables

Request transition tables for the trigger.
CREATE TRIGGER rows_modified
AFTER UPDATE ON public.books
REFERENCING NEW TABLE newtab OLD TABLE oldtab
FOR EACH STATEMENT
EXECUTE PROCEDURE public.rows_modified();

db=# SELECT count(1) FROM public.books WHERE price < 1.0;
-[RECORD 1]
count | 4

db=# UPDATE public.books set price = price * 2 where price < 1.0 ;

NOTICE: Price of Hans Peter Roth Orte des Grauens in der Schweiz changed from CHF [...]
NOTICE: Price of Betty Bossi Das grosse Betty Bossi Kochbuch changed from CHF 0.25 [...]
NOTICE: Price of Werner König DTV Atlas der deutschen Sprache changed from CHF 0.41 [...]
NOTICE: Price of Otto Hostettler Darknet changed from CHF 0.55 to CHF 1.10
NOTICE: Modified 4 rows. Old average price: 0.47, new average price: 0.93
UPDATE 4

Also available for row level triggers.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 13/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 14/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers Security
Who can create a trigger ?

A trigger can be specified by users having the trigger privilege
on the object for which the trigger is being created.

Avoid granting this privilege to users unless you know who you
are granting it to. Triggers perform mostly silently and users
may misuse the feature maliciously or even create obscure
performance problems.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 15/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers Security
Who can execute a trigger?

A trigger specifies a function that is not called directly. The only
way to invoke the function is through an event. A user who has
privileges to modify data in a table will be able to execute the
function defined for a trigger without needing an explicit
EXECUTE privilege.

BUT restrictions that apply to the execution steps within the
body of the trigger function follow the same rule as for functions
in general. In particular the CURRENT_USER must have any
required privilege on objects touched by the trigger function.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 16/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers Security
Who can execute a trigger?

As privileged user.
db=> GRANT SELECT, INSERT, UPDATE, DELETE ON TABLE public.books TO genericuser;

As genericuser.

db=> SELECT SESSION_USER, CURRENT_USER;
session_user | current_user

--------------+--------------
genericuser | genericuser

db=> UPDATE public.books SET price = 11.00 WHERE book_id = 1;
ERROR: permission denied for relation books_log
CONTEXT: SQL statement "INSERT INTO public.books_log (log_f, log_msg)
VALUES (’public.price_changed()’,v_msg)"

PL/pgSQL function price_changed() line 6 at SQL statement

You may choose to grant INSERT to genericuser or to declare
the trigger function as SECURITY DEFINER. Which is better
depends on your policies.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 17/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 18/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
Modify a trigger

db=> \h ALTER TRIGGER
Command: ALTER TRIGGER
Description: change the definition of a trigger
Syntax:
ALTER TRIGGER name ON table_name RENAME TO new_name
ALTER TRIGGER name ON table_name DEPENDS ON EXTENSION extension_name

db=> \h DROP TRIGGER
Command: DROP TRIGGER
Description: remove a trigger
Syntax:
DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Real changes to trigger behaviour are changes in the
trigger functions.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 19/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
Disable a trigger

db=> ALTER TABLE public.books DISABLE TRIGGER price_changed ;
db=> \d public.books
[...]
Triggers:

rows_modified AFTER UPDATE ON books REFERENCING OLD TABLE AS oldtab [...]
Disabled user triggers:

price_changed AFTER UPDATE ON books FOR EACH ROW [...]

db=> ALTER TABLE public.books ENABLE TRIGGER price_changed ;
db=> \d public.books
[...]
Triggers:

price_changed AFTER UPDATE ON books FOR EACH ROW [...]
rows_modified AFTER UPDATE ON books REFERENCING OLD TABLE AS oldtab [...]

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 20/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
Find triggers: Which tables have triggers?

db=> SELECT n.nspname || ’.’ || c.relname AS table_name
FROM pg_catalog.pg_namespace n,

pg_catalog.pg_class c
WHERE c.relhastriggers
AND n.nspname !~ ’^pg_’
AND n.nspname <> ’information_schema’
ORDER BY table_name;

table_name

public.books

db=> SELECT event_object_schema || ’.’ || event_object_table AS tablename,
trigger_name FROM information_schema.triggers

ORDER BY tablename,
trigger_name ;

tablename | trigger_name
--------------+---------------
public.books | price_changed
public.books | rows_modified

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 21/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
Find triggers: Which tables share a trigger ?

Careful: trigger name <> trigger function. The same trigger
name may have different functions defined for different tables.

db=> CREATE TRIGGER price_changed AFTER UPDATE ON TABLE books_bak
FOR EACH STATEMENT EXECUTE PROCEDURE rows_modified();

db=> SELECT event_object_schema || ’.’ || event_object_table as tablename,
trigger_name,
action_statement

FROM information_schema.triggers
WHERE trigger_name = ’price_changed’ ;

tablename | trigger_name | action_statement
------------------+---------------+-----------------------------------
public.books | price_changed | EXECUTE PROCEDURE price_changed()
public.books_bak | price_changed | EXECUTE PROCEDURE rows_modified()

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 22/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
Find triggers: Which tables share a trigger ?

db=> WITH tf AS (
SELECT tgfoid <-- Get the function OID
FROM pg_catalog.pg_trigger
WHERE tgname = ’rows_modified’ <-- The name of the trigger
AND tgrelid = ’public.books’::regclass <-- On this table

) -- Find all tables using the same function in a trigger
SELECT n.nspname || ’.’ || c.relname AS table_name,

t.tgname AS trigger_name,
p.proname AS func_name

FROM pg_catalog.pg_namespace n,
pg_catalog.pg_class c,
pg_catalog.pg_trigger t,
pg_catalog.pg_proc p,
tf

WHERE t.tgfoid = tf.tgfoid
AND n.oid = c.relnamespace
AND t.tgrelid = c.oid
AND p.oid = tf.tgfoid;

table_name | trigger_name | func_name
------------------+---------------+---------------
public.books | rows_modified | rows_modified
public.books_bak | price_changed | rows_modified

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 23/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
Find triggers: Which triggers has a table ?

Shortcut for a single table if you use the best PostgreSQL
client.
db=> \d public.books

Table "public.books"
Column | Type | Collation | Nullable |

---------------+--------------------------+-----------+----------+
book_id | bigint | | not null |

[...]
Indexes:

"books_pkey" PRIMARY KEY, btree (book_id)
Triggers:

price_changed AFTER UPDATE ON books FOR EACH ROW
WHEN (old.price IS DISTINCT FROM new.price OR

old.currency IS DISTINCT FROM new.currency)
EXECUTE PROCEDURE price_changed()

rows_modified AFTER UPDATE ON books
REFERENCING OLD TABLE AS oldtab NEW TABLE AS newtab
FOR EACH STATEMENT
EXECUTE PROCEDURE rows_modified()

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 24/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Manage Triggers
What does a trigger do ?

db=> SELECT pg_catalog.pg_get_functiondef((SELECT tgfoid
FROM pg_catalog.pg_trigger
WHERE tgname = ’price_changed’));

pg_get_functiondef

CREATE OR REPLACE FUNCTION public.price_changed()
RETURNS trigger
LANGUAGE plpgsql

AS $function$
DECLARE
v_msg TEXT;

BEGIN
v_msg := ’Price of ’||NEW.author||’ ’||NEW.title||’ changed from ’||OLD.currency||

’ ’||OLD.price||’ to ’||NEW.currency||’ ’||NEW.price;
INSERT INTO public.books_log (log_f, log_msg)
VALUES (’public.price_changed()’,v_msg);
RAISE NOTICE ’%’, v_msg;
RETURN NULL;

END;
$function$

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 25/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 26/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Most typical Use Cases

Keeping track of changes.
History.
Audit.

Complex checks before modifications in the database.

Enforce complex business rules.

Create additional related entries.

Protect data.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 27/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Order of triggers

SELECT trigger_name,
event_object_schema AS schemaname,
event_object_table AS tablename,
action_timing AS timing,
event_manipulation AS events,
replace(action_statement, ’EXECUTE PROCEDURE ’,’’) AS function

FROM information_schema.triggers
ORDER BY action_timing DESC,

trigger_name ;

trigger_name | schemaname | tablename | timing | events | function
---------------+------------+-----------+--------+--------+-----------------
price_changed | public | books | AFTER | UPDATE | price_changed()
rows_modified | public | books | AFTER | UPDATE | rows_modified()

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 28/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Histories And DDL changes: Create a history table and trigger

CREATE TABLE public.books_history AS
SELECT *, NULL::TEXT AS change_op, NULL::TEXT AS change_user,

NULL::TIMESTAMPTZ AS change_ts
FROM public.books LIMIT 0;

CREATE OR REPLACE FUNCTION public.books_history()
RETURNS TRIGGER
AS $$
BEGIN
INSERT INTO public.books_history
SELECT NEW.*, TG_OP, SESSION_USER, clock_timestamp();
CASE WHEN TG_OP = ’DELETE’ THEN RETURN OLD;

ELSE RETURN NEW;
END CASE;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER books_history
AFTER INSERT OR UPDATE OR DELETE
ON public.books
FOR EACH ROW EXECUTE PROCEDURE public.books_history();

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 29/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Histories And DDL changes: What happens if your table structure changes ?

db=> UPDATE public.books SET title = ’La divina commedia’, price = 10.66 WHERE book_id = 1 ;
[...]
UPDATE 1

db=> SELECT * FROM public.books_history;
-[RECORD 1]-+------------------------------
book_id | 1
author | Dante Alighieri
title | La divina commedia
[...]
change_op | UPDATE
change_user | charles
change_ts | 2018-01-23 09:39:56.437427+01

And now...
ALTER TABLE public.books ALTER COLUMN last_modified TYPE TIMESTAMP;

db=> UPDATE public.books SET title = ’La divina commedia’, price = 10.66 WHERE book_id = 1 ;

ERROR: attribute 6 has wrong type <-- What is the problem?
CONTEXT: SQL statement "INSERT INTO public.books_history -+
SELECT NEW.*, TG_OP, SESSION_USER, clock_timestamp()" |-- Where did it happen?

PL/pgSQL function books_history() line 3 at SQL statement -+

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 30/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

Triggers can be an efficient way to protect data against
unintended changes. In a real use case we had the following
situation.

A table recording answers to time series surveys.

The table only inserts when new answers come into the system.

Answers can come from a web frontend form or from scanned paper forms. In
latter case data is inserted into a flat table with a trigger that reformats data
and makes the inserts into the time series survey data target table.

The World was kind and simple till new requirements came
up...

It must be possible to find the earliest invitation to a survey.

It must be possible to track the basic answering discipline of respondents.

It must be possible to analyze every aspect of non respondents.

This information must be retrieved very quickly and displayed in a Web GUI.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 31/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

In short: We need to create entries for invitations, e.g. empty
form entries in the time series survey table and modify the
interface for paper forms data input (the trigger) to allow
updates, instead of or additionally to inserts.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 32/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

db=> \d survey_data
Table "public.survey_data"

Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
sp_id | integer | | not null |
year | integer | | not null |
month | integer | | not null |
roa | integer | | |
v1 | integer | | |
v2 | integer | | |

Indexes:
"sd_pkey" PRIMARY KEY, btree (sp_id, year, month)

db=> SELECT * FROM public.survey_data;
sp_id | year | month | roa | v1 | v2

--------+------+-------+-----+----+----
119903 | 2017 | 9 | 1 | 0 | 0
117278 | 2018 | 1 | 2 | 0 | 0
115709 | 2018 | 1 | 2 | -1 | 0
117147 | 2018 | 1 | 2 | -1 | 0
115581 | 2018 | 1 | 2 | 1 | 0
115496 | 2018 | 1 | 1 | 1 | 0

[...]

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 33/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

The nice brave World of before...
db=> SELECT year, month, count(*) AS total_forms,

avg(v1)::NUMERIC(6,3) AS v1_avg,
avg(v2)::NUMERIC(6,3) AS v2_avg

FROM public.survey_data
GROUP BY year, month ORDER BY year, month;

year | month | total_forms | v1_avg | v2_avg
------+-------+-------------+--------+--------
2017 | 7 | 183 | -0.188 | 0.068
2017 | 8 | 180 | -0.217 | 0.119
2017 | 9 | 184 | -0.233 | 0.098
2017 | 10 | 180 | -0.196 | 0.088
2017 | 11 | 189 | -0.257 | 0.061
2017 | 12 | 184 | -0.137 | 0.096

(6 rows)

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 34/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

Now we should find answers to the new requirements. Before
including empty records:
db=> SELECT year, month, count(*) AS total_forms,

count(*) FILTER (WHERE roa IS NOT NULL) AS answered_forms,
avg(v1)::NUMERIC(6,3) AS v1_avg,
avg(v2)::NUMERIC(6,3) AS v2_avg

FROM public.survey_data
GROUP BY year, month ORDER BY year, month;

year | month | total_forms | answered_forms | v1_avg | v2_avg
------+-------+-------------+----------------+--------+--------
[...]
2017 | 11 | 189 | 189 | -0.257 | 0.061
2017 | 12 | 184 | 184 | -0.137 | 0.096
2018 | 1 | 184 | 184 | -0.267 | 0.069

After change:
year | month | total_forms | answered_forms | v1_avg | v2_avg

------+-------+-------------+----------------+--------+--------
[...]
2017 | 11 | 256 | 189 | -0.257 | 0.061
2017 | 12 | 252 | 184 | -0.137 | 0.096
2018 | 1 | 265 | 184 | -0.267 | 0.069

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 35/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

Old Trigger:
BEGIN
INSERT INTO public.survey_data
VALUES (NEW.sp_id, NEW.year, NEW.month, NEW.roa, NEW.v1, NEW.v2);
RETURN NEW;

END;

CREATE TRIGGER trg_add_paper_forms
BEFORE INSERT ON public.survey_data_paper
FOR EACH ROW EXECUTE PROCEDURE public.trg_add_paper_forms();

New Trigger:
CREATE OR REPLACE FUNCTION public.trg_add_paper_forms()
RETURNS TRIGGER
AS $$
BEGIN
UPDATE public.survey_data
SET roa = NEW.roa,

v1 = NEW.v1,
v2 = NEW.v2

WHERE sp_id = NEW.sp_id;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 36/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

Nice, but after loading paper data for 2018 January we found
that...
year | month | total_forms | answered_forms | v1_avg | v2_avg

------+-------+-------------+----------------+--------+--------
[...]
2017 | 11 | 256 | 178 | -0.259 | 0.078
2017 | 12 | 252 | 179 | -0.263 | 0.071
2018 | 1 | 265 | 184 | -0.267 | 0.069
(7 rows)

... the values in the past changed. They were:
year | month | total_forms | answered_forms | v1_avg | v2_avg

------+-------+-------------+----------------+--------+--------
[...]
2017 | 11 | 256 | 189 | -0.257 | 0.061
2017 | 12 | 252 | 184 | -0.137 | 0.096
2018 | 1 | 265 | 184 | -0.267 | 0.069

What caused the change ?

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 37/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

After restoring the data from the past we added a data
protection trigger.
CREATE OR REPLACE FUNCTION public.protect_past_survey_data()
RETURNS TRIGGER
AS $$
BEGIN
-- If data that is being changed is not in the current month.
IF make_date(NEW.year, NEW.month, 1) < date_trunc(’month’, CURRENT_DATE) THEN
-- Stop execution and inform user.
RAISE EXCEPTION ’It is not allowed to change past data (%)’, NEW;

END IF;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER trg_protect_survey_data
BEFORE INSERT OR UPDATE ON public.survey_data
FOR EACH ROW EXECUTE PROCEDURE public.protect_past_survey_data();

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 38/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Use Cases And Pitfalls
Errors In Functions: How A Trigger Solved A Trigger Problem

Trying to update paper form data for 2018 month 1 led to this
error:
ERROR: It is not allowed to change past data ((117278,2017,9,2,0,0))
CONTEXT: PL/pgSQL function protect_past_survey_data() line 4 at RAISE
SQL statement "UPDATE public.survey_data
SET roa = NEW.roa,

v1 = NEW.v1,
v2 = NEW.v2

WHERE sp_id = NEW.sp_id"
PL/pgSQL function trg_add_paper_forms() line 3 at SQL statement

Now it became clear where the error was and solve it:
BEGIN
UPDATE public.survey_data
SET roa = NEW.roa,

v1 = NEW.v1,
v2 = NEW.v2

WHERE sp_id = NEW.sp_id
AND year = NEW.year
AND month = NEW.month;
RETURN NEW;

END;

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 39/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 40/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers And Other Stories
Errors In Functions: How A Trigger Solved A Trigger Problem

Ever heard ?
Triggers are useless for auditing because the audit data is in
the same database that is being audited.
Well, heard of foreign data wrappers?

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 41/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers And Other Stories
Manage Histories and Audits On A Separate Database With FDW

CREATE EXTENSION postgres_fdw;
CREATE SERVER dbremote FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host ’localhost’, dbname ’dbremote’, port ’5432’);

CREATE USER MAPPING FOR charles SERVER dbremote
OPTIONS (user ’remoteuser’, password ’...’);

CREATE FOREIGN TABLE public.books_history_remote (
book_id BIGINT,
author TEXT,
title TEXT,
currency TEXT,
price NUMERIC(6,2),
last_modified TIMESTAMPTZ,
visible BOOLEAN,
change_op TEXT,
change_user TEXT,
change_ts TIMESTAMPTZ

)
SERVER dbremote
OPTIONS (

schema_name ’public’,
table_name ’books_history’,
updatable ’true’

);

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 42/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Triggers And Other Stories
Manage Histories and Audits On A Separate Database

CREATE OR REPLACE FUNCTION public.books_history()
RETURNS TRIGGER
AS $$
BEGIN
INSERT INTO public.books_history_remote
SELECT NEW.*, TG_OP, SESSION_USER, clock_timestamp();
CASE WHEN TG_OP = ’DELETE’ THEN RETURN OLD;

ELSE RETURN NEW;
END CASE;

END;
$$ LANGUAGE plpgsql;

db=> UPDATE public.books SET price = 11.10 WHERE book_id = 1 ;
UPDATE 1
db=> SELECT * FROM books_history_remote;
-[RECORD 1]-+------------------------------
book_id | 1
author | Dante Alighieri
title | La divina commedia
currency | CHF
price | 11.10
last_modified | 2018-01-08 14:06:35.197023+01
visible | t
change_op | UPDATE
change_user | charles
change_ts | 2018-01-23 11:27:21.768927+01

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 43/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Outline

1 Introduction

2 Triggers Security

3 Manage Triggers

4 Use Cases And Pitfalls

5 Triggers And Other Stories

6 Recommendations

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 44/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Recommendations

The usage of triggers is easy, and as easy as that is, easy it is
to do damage. But with some simple guidelines you should be
able to avoid problems.

Triggers are a powerful mechanism for automating processes in a database.

If your application interface is made of functions, use triggers only for
requirements not covered by them.

Take special care and make extensive tests before setting a trigger into
production.

Test your trigger function with real data, not just a few test data.

Make a backup of your data before launching a trigger into production.

If you have more than one trigger on a table, make sure the order of them does
what you intend it to do.

Let your triggers tell you what they are doing and when.

Document the intended behaviour of your triggers (e.g. with COMMENT ON
TRIGGER).

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 45/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Resources

These slides
http://www.artesano.ch/documents/04-publications/triggers_pdfa.pdf

Official PostgreSQL documentation
Description (Chapter 38): https://www.postgresql.org/docs/10/static/triggers.html

Event Triggers (Chapter 39):
https://www.postgresql.org/docs/10/static/event-triggers.html

Trigger functions (Chapter 42.9):
https://www.postgresql.org/docs/10/static/plpgsql-trigger.html

CREATE TRIGGER:
https://www.postgresql.org/docs/10/static/sql-createtrigger.html

ALTER TRIGGER: https://www.postgresql.org/docs/10/static/sql-altertrigger.html

DROP TRIGGER: https://www.postgresql.org/docs/10/static/sql-droptrigger.html

In addition there are plenty of articles in favour and against
triggers on the internet. Listing them here is not meaningful,
simply search for them with your preferred search engine.

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 46/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Contact

Work: clavadetscher@kof.ethz.ch
http://www.kof.ethz.ch

SwissPUG: clavadetscher@swisspug.org
http://www.swisspug.org

Private: charles@artesano.ch
http://www.artesano.ch

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 47/48

Introduction Triggers Security Manage Triggers Use Cases And Pitfalls Triggers And Other Stories Recommendations

Thank you

Thank you very much for your attention !

https://2018.pgday.paris/feedback

Q&A

Charles Clavadetscher Swiss PostgreSQL Users Group

Triggers - Friends To Handle With Care 48/48

	Introduction
	Triggers Security
	Manage Triggers
	Use Cases And Pitfalls
	Triggers And Other Stories
	Recommendations

