PG6DAY.PARIS 2019, PARIS | MARCH 12, 2019

How to write SQL queries?

Dimitri Fontaine
Citus Data
@tapoueh

The Art of

Post reSQL
g O)g(D

POSTGRESQL MAJOR CONTRIBUTOR

PostgreSQL

CURRENTLY WORRKING AT

Citus Data

pgloader.io

|
|

)

!
!
)
R

http://pgloader.io

SQL Queries

with computed_data as

(

select cast(date as date) as date,

to_char(date, 'Dy') as day,
coalesce(dollars, 0) as dollars,
lag(dollars, 1)
over(
partition by extract('isodow' from date)
order by date
)

as last_week_dollars

* Generate the month calendar, plus a week
* before so that we have values to compare
* dollars against even for the first week
x of the month.
*/
generate_series(date :'start' - 1dinterval 'l week',
date :'start' + dinterval 'l month'
- interval 'l day',
interval 'l day'
)
as calendar (date)
left join factbook using(date)

Monthly Report, WoW%, SQL

select date, day,

to_char(
coalesce(dollars, 0),
'L99G999G999G999"
) as dollars,
case when dollars is not null
and dollars <> 0
then round(100.0
*x (dollars - last_week_dollars)
/ dollars
y 2)
end
as "WoW %"

from computed_data
where date >= date :'start'
order by date;

Monthly Report, Fixed, SQL

select cast(calendar.entry as date) as date,
coalesce(shares, 0) as shares,
coalesce(trades, 0) as trades,
to_char(
coalesce(dollars, 0),
'L99G999G999G999"
) as dollars
from /*
x Generate the target month's calendar then LEFT JOIN
* each day against the factbook dataset, so as to have
x every day i1n the result set, whether or not we have a
* book entry for the day.
x/
generate_series(date :'start',
date :'start' + 1interval 'l month'
- interval 'l day',
interval 'l day'
)
as calendar(entry)
left join factbook
on factbook.date = calendar.entry
order by date;

Monthly Report, SGQL

\set start '2017-02-01"

select date,
to_char(shares, '99G999G999G999') as shares,
to_char(trades, '99G999G999') as trades,
to_char(dollars, 'L99G999G999G999') as dollars
from factbook
where date >= date :'start'
and date < date :'start' + interval 'l month'

order by date;

Monthly Report, SQL

date shares trades dollars
2017-02-01 1,161,001,502 5,217,859 | $ 44,660,060,305
2017-02-02 1,128,144,760 4,586,343 | $ 43,276,102,903
2017-02-03 1,084,735,476 4,396,485 | $ 42,801,562,275
2017-02-06 954,533,086 3,817,270 | $ 37,300,908,120
2017-02-07 1,037,660,897 4,220,252 | $ 39,754,062,721
2017-02-08 1,100,076,176 4,410,966 | $ 40,491,648,732
2017-02-09 1,081,638,761 4,462,009 $ 40,169,585,511
2017-02-10 1,021,379,481 4,028,745 | $ 38,347,515,768
2017-02-13 1,020,482,007 3,963,509 | $ 38,745,317,913
2017-02-14 1,041,009,698 4,299,974 | $ 40,737,106,101
2017-02-15 1,120,119,333 4,424,251 | $ 43,802,653,477
2017-02-16 1,091,339,672 4,461,548 | $ 41,956,691,405
2017-02-17 1,160,693,221 4,132,233 | $ 48,862,504,551
2017-02-21 1,103,777,644 4,323,282 $ 44,416,927,777
2017-02-22 1,064,236,648 4,169,982 | $ 41,137,731,714
2017-02-23 1,192,772 ,644 4,839,887 | $ 44,254,446,593
2017-02-24 1,187,320,171 4,656,770 | $ 45,229,398,830
2017-02-27 1,132,693,382 4,243,911 | $ 43,613,734,358
2017-02-28 1,455,597,403 4,789,769 | $ 57,874,495,227

(19 rows)

The data model

Races, drivers, results

appdev> \dt fldb.
List of relations

Schema Name Type Owner

f1db circuits table appdev
f1db constructorresults table appdev
f1db constructors table appdev
f1db constructorstandings table appdev
f1db drivers table appdev
f1db driverstandings table appdev
f1db laptimes table appdev
f1db pitstops table appdev
f1db qualifying table appdev
f1db races table appdev
f1db results table appdev
f1db seasons table appdev
f1db status table appdev

(13 rows)

Races

select * from races limit 1;

—[RECORD 1]

raceid 1

year 2009

round 1

circuitid 1

name Australian Grand Prix

date 2009-03-29

time 06:00:00

url http://en.wikipedia.org/wiki/2009_Australian_Grand_Prix

Drivers

select code,
format('%s %s', forename, surname) as fullname,
forename,
surname
from drivers;

code fullname forename surname
HAM Lewis Hamilton Lewis Hami lton
HEI Nick Heidfeld N1ick Heidfeld
ROS Nico Rosberg Nico Rosberg

(3 rows)

Results

select code, forename, surname,
count(*) as wins
from drivers
join results using(driverid)
where position =1
group by driverid
order by wins desc

limit 3;
code forename surname wins
MSC Michael Schumacher 91
HAM Lewis Hamilton 56
o Alain Prost 51

(3 rows)

How to write SQL

Inquiries

* Business Cases Marketing dept.
e User Stories e Dashboards

e Practice

display all the races from a
quarter with their winner

\set beginning '2017-04-01'
\set months 3

display all the races from a
quarter with their winner

select date, name, drivers.surname as winner
from races
left join results
on results.raceid = races.raceid
and results.position = 1
left join drivers using(driverid)
where date >= date :'beginning'
and date < date :'beginning'
+ :months * interval 'l month';

display all the races from a
quarter with their winner

select date, name, drivers.surname as winner
from races
left join
(select raceid, driverid
from results
where position = 1
)
as winners using(raceid)
left join drivers using(driverid)
where date >= date :'beginning'
and date < date :'beginning'
+ :months * interval 'l month';

Top-3 drivers by decade

Top-3 drivers by decade

with decades as (
select extract('year' from date_trunc('decade', date))::int as decade
from races
group by decade
)
select decade,
rank() over (partition by decade order by points desc) as rank,
surname,
points
from decades
left join lateral
(
select surname, sum(points) as points
from races
join results using(raceid)
join drivers using(driverid)

where extract('year' from date_trunc('decade', races.date))::int
= decades.decade

group by surname
order by sum(points) desc
limit 3
)
as winners on true
order by decade, points desc;

Compute cumulated constructor
and drivers points in a season

Compute cumulated constructor
and drivers points in a season

select drivers.surname as driver,
constructors.name as constructor,
sum(points) as points

from results
join races using(raceid)
join drivers using(driverid)
join constructors using(constructorid)

where date >= :season
and date < :season + interval 'l year!'

group by grouping sets((drivers.surname),
(constructors.name))
having sum(points) > 20
order by constructors.name is not null,
drivers.surname is not null,
points desc;

PostgreSQL Extensions

(Geolocation: ip4r

select x*
from geolite.blocks
join geolite.location
using(locid)
where 1iprange
>>=
'74.125.195.147"';

Constraint Exclusion

create table geolite.blocks
(

1iprange 1p4r,
locid integer,

exclude using gist (iprange with &&)
)5

Geolocation & earthdistance

with geoloc as

(

select
from
join
where

)

select

from
order by
Timit

location as 1
location

blocks using(locid)
iprange

>>=
'212.58.251.195"

name,
pos <@ 1 miles
pubnames, geoloc
pos <-> 1

10;

name miles
The Windmill 0.238820308117723
County Hall Arms 0.343235607674773
St Stephen's Tavern 0.355548630092567
The Red Lion 0.417746499125936
Zeitgeist 0.395340599421532
The Rose 0.462805636194762
The Black Dog 0.536202634581979
All Bar One 0.489581827372222

Slug and Lettuce
Westminster Arms
(10 rows)

0.49081531378207
0.42400619117691

NBA Games Statistics

“An interesting factoid: the team that recorded the
fewest defensive rebounds in a win was the
1995-96 Toronto Raptors, who beat the
Milwaukee Bucks 93-87 on 12/26/1995 despite

recording only 14 defensive rebounds.”

NBA Games Statistics

with stats(game, team, drb, min) as (
select ts.game, ts.team, drb, min(drb) over ()
from team_stats ts
join winners w on w.1d = ts.game
and w.winner = ts.team

)

select game.date: :date,
host.name || ' -- ' || host_score as host,
guest.name || ' -— ' || guest_score as guest,

stats.drb as winner_drb
from stats
join game on game.id = stats.game
join team host on host.id = game.host
join team guest on guest.id = game.guest
where drb = min;

NBA Games Statistics

—[RECORD 1]J-———=—==—— ==~
date 1995-12-26

host Toronto Raptors -- 93

guest Milwaukee Bucks -- 87
winner_drb 14

—[RECORD 2]-———==——— =~
date 1996-02-02

host Golden State Warriors -- 114
guest Toronto Raptors -- 111
winner_drb 14

-[RECORD 3 - ————————
date 1998-03-31

host Vancouver Grizzlies -- 101
guest Dallas Mavericks —-- 104
winner_drb 14

-[RECORD 4 J-———--—————————————————————
date 2009-01-14

host New York Knicks -- 128

guest Washington Wizards —-- 122
winner_drb 14

Time: 126.276 ms

Pure SQL Histograms

with drb_stats as (
select min(drb) as min,
max (drb) as max
from team_stats
) s
histogram as (
select width_bucket(drb, min, max, 9) as bucket,
int4range(min(drb), max(drb), '[]') as range,
count(x) as freq
from team_stats, drb_stats
group by bucket
order by bucket
)
select bucket, range, freq,
repeat('m',
(freq::float
/ max(freq) over ()
* 30
):iint
) as bar
from histogram;

Pure SQL Histograms

bucket range freqg bar
———————— +-—rr

1 10,15) 52
2 15,20) 1363 | ==
3 20,25) 8832 | EEEEEEEEEENEE
4 25,30) 20917 | EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
5 30,35) 20681 ENEEEEEEEEEEEEEEEEEEE NN
6 35,40) 0166 | EEEEEEEEEENEN
7 40,45) 2093 | mmm
8 45,50) 247
9 50,54) 20

10 '54,55) 1

(10 rows)

Mastering PostgreSQL in
Application Development

https://masteringpostgresql.com

Mastering P e
PostgreSQL PostgreSQL
In Application

Development

https://masteringpostgresql.com

Mastering
PostgreSQL
In Application
Development

-15%

“pgdayparis”

Mastering,
PostgreSQL.

In Application Development

POSTGRESQL ESPANA, MADRID | NOVEMBER 28, 2018

Ask Me Two Questions!

Dimitri Fontaine
Citus Data
@tapoueh

The Art of

Post reSQL
g O)g(D

