Breaking PostgreSQL at Scale.

Christophe Pettus
PostgreSQL Experts
pgDay Paris 2019




Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

thebuild.com

twitter @xof


mailto:christophe.pettus@pgexperts.com
http://thebuild.com

So, what is this?

PostgreSQL can handle databases of any size.

e Largest community-PostgreSQL DB I’ve worked on
was multiple petabytes.

But how you handle PostgreSQL changes as databases
get larger.

What works for a 1GB database doesn’t for a 10TB
database.

Let’s talk about that!



thebuild.com



Database Sizes




2
o
s

o N \‘_ N 7

L e
X

L
a4
4‘..

l;('

.'.‘ -

Ten Gigabytes.



Your New Database!

e |t's very hard to go wrong with small databases on
PostgreSQL.

e Nearly everything will run fast...
e ... even “pathological” joins, unless then are fully NA2.

 The stock postgresqgl.conf will work.



How much memory?

If you can’t fit your database in memory...
e ... reconsider your life choices.

Even small “micro” instances can handle a database this
size.

The entire database can probably fit in memory.

Even sequential scans will zip right along.



Backups.

Just use pg_dump.
A 5GB pg_dump takes 90 seconds on my laptop.
No need for anything more sophisticated.

Stick the backup files in cloud storage (S3, B2), and
you’'re done.



High Availability.

e A primary and a secondary.
e Direct streaming, or basic WAL archiving.

e Manual failover? It’'s cheap and easy.



Tuning.

If you insist.
The usual memory-related parameters.

A couple of specialized parameters for all-in-memory
databases.

But at this stage, just keep it simple.



Tuning.

seq_page_cost = 0.1
random_page_cost = 0.1
cpu_tuple_cost = 0.03
shared_buffers = 25% of memory
work_mem = 16 MB

maintenance work_mem = 128MB



Tuning.

log_destination = 'csvlog’
logging_collector = on

log_directory = '/var/log/postgresql’
log_filename = 'postgresql-%Y%m%d-%H%M%S.log'
log_rotation_size = 1GB
log_rotation_age = 1d
log_min_duration_statement = 250ms
log_checkpoints = on

log_connections = on
log_disconnections = on
log_lock_waits = on

log_statement = 'ddl'
log_temp_files=0
log_autovacuum_min_duration = 1000



Upgrades.

pg_dump/pg_restore.
You’re done.
But do it!

The farther you fall behind on major versions, the harder it
becomes.

Get into the habit of planning your upgrade strategy.



100 Gigabytes.



Not huge, but...

e ... the database is starting to get bigger than will fit in
memory.

e Queries might starting performing poorly.

* pg_dump backups take too long to take or restore.



How much memory?

How much memory does a PostgreSQL database need?
If you can fit the whole thing in memory, great.
Otherwise, try to fit at least the top 1-3 largest indexes.

e |deally, effective_cache_size > largest index.

If not, more memory is always better, but...

... more memory does not help write performance.



Backups.

Pg_dump won’t cut it anymore.
Time for PITR backups!
pgBackRest is the new hotness.

WAL-E is the old warhorse.

Can roll your own (if you must).



PIT R

Takes an entire filesystem copy, plus WAL archiving.
More frequent filesystem copies means faster restore...
... at the cost of doing the large copy.

Other benefits: Can restore to a point in time, can use
backup to prime secondary instances.



Tuning.

seq_page_cost = 0.5-1.0
random_page_cost = 0.5-2.0
shared_buffers = 25% of memory
maintenance_work_mem =512MB-2GB



work mem

Base work_mem on actual temporary files being created
In the logs.

Set to 2-3x the largest temporary file.

If those are huge? Ideally, fix the query that is creating
them.

If you can’t, accept it for low-frequency queries, or...

... start thinking about more memory.



Load balancing.

Consider moving read traffic to streaming secondaries.
Be aware that replication lag is non-zero.
Handle the traffic balancing in the app if you can.

If you can’t, pgpool is there for you (although it’s quirky).



Monitoring.

Time for real monitoring!

At a minimum, process logs through pgbadger.
pg_stat_statements is very valuable.

e pganalyze is a handy external tool.

New Relic, Datadog, etc., etc. all have PostgreSQL
plugins.



Queries.

Check pgbadger / pg_stat_statements regularly for slower
queries.

Missing indexes will start becoming very apparent here.
Create as required, but...
... don’t just start slapping indexes on everything!

Base index creation on specific query needs.



High Availability.

e Probably don’t want to fix it manually anymore.
e | ook at tooling for failover:

e pgpool2

e Patroni

e Hosted solutions (Amazon RDS, etc.)



Upgrades.

pgupgrade.

In-place, low downtime.
Very reliable and well-tested.

Some extensions are not a comfortable fit, especially for
large major version jumps.

e We’'re looking at you, PostGIS.



One Terabyte.



Things Get Real.

Just can’t get enough memory anymore.
Queries are starting to fall apart more regularly.

Running out of read capacity.

Doing full PITR backups is taking too long.



Resources

As much memory as you can afford.

Data warehouses need much more than transactional
databases.

/0 throughput becomes much more important.

Consider moving to fast local storage from slower SAN-
based solutions (such as EBS, etc.).



Backups

e Start doing incremental backups.
e pgBackRest does them out of the box.
e You can roll your own with rsync, but...

e ... thisis very much extra for experts!



Checkpoints/WAL.

min_wal _size = 2GB+
max_wal _size = 8GB+
checkpoint_timeout = 15min

checkpoint_completion_target = 0.9
wal_compression = on



Restrain yourself.

e Keep shared_buffers to 16-32GB.

e Larger will increase checkpoint activity without much
actual performance benefit.

e Don’t go crazy with maintenance_work_mem.

e |f most indexes are larger than 2GB, it is often better to
decrease it to 256-512MB.



Load balancing.

e Read replicas become very important.

e Distinguish between the failover candidate (that stays
close to the primary) and read replicas (that can accept
delays due to queries).

e Have scripted / config-as-code ways of spinning up new
secondaries.



Off-Load Services.

e Move analytic queries off of the primary database.

e (Consider creating a logical replica for analytics and
data warehousing.

e Move job queues and similar high-update-rate, low-
retention-period data items out of the database and into
other datastores (Redis, etc.).



VACUUM.

Vacuum can start taking a long time here.

Only increase autovacuum_workers if you have a large
number of database tables (500+).

Let vacuum jobs complete!
e Be careful with long-running transactions.

Consider automated “manual” vacuums for tables that
are very high update rate.



VACUUM.

e |f autovacuum is taking too long, consider making it more
*aggressive” by reducing
autovacuum_vacuum_cost_delay.

e |f autovacuum is causing capacity issues, consider
iIncreasing autovacuum_vacuum_cost_delay.

e But let autovacuum run! You can get yourself into serious
(like, database-shutdown-serious) trouble without it.



Indexes

e |Indexes are getting pretty huge now.
e Consider partial indexes for specific queries.
e Analyze which indexes are really being used, and drop

those that aren’t necessary (pg_stat_user_indexes is your
friend here).



Queries.

Queries can start becoming problematic here.

Even the “best” query can take a long time to run against
the much larger dataset.

“Index Scan” queries turning into “Bitmap Index Scan /
Bitmap Heap Scan” queries, and taking much longer.



Partitioning.

Look for tables than can benefit from partitioning.
Time-based, hash-based, etc.

PostgreSQL 10+ has greatly improved partitioning
functionality.

Just be sure that the table has a strong partitioning key.



Parallel Query Execution.

e |ncrease the number of query workers, and the per-query
parallelism.

e Very powerful for queries that handle large result sets.

e Make sure your |I/O capacity can keep up!



Statistics Targets.

For fields with a large number of values, the default
statistic target can be too low.

Especially for longer values.
e Strings, UUIDs, etc.

Look for queries where a highly specific query is planned
to return a large number of rows.

Don’t go crazy! Increasing statistics targets slows
ANALYZE time.



Alternative Indexes.

Some fields are not good matches for B-tree indexes.
Long strings, range types, etc.
Use indexes appropriate for the type.

Hash indexes are very good for strings, especially those
with most of the entropy later in the string (URLs, etc.).



Upgrades.

pgupgrade still works fine.

Time is proportional to the number of database objects,
not database size.

If downtime is unacceptable, logical replication /
rehoming works as well.

Be sure to plan for major version upgrades...

e ... lest you be the 1PB database still on 8.1.



7
O
5
o
©
O
—
G
—




e Congratulations! You’re definitely in the big leagues now.

e Some hard decisions will need to be made.



Backups

e Anything involving copying is going to start being very
slow and impractical.

e Consider moving to file system snapshots for the base
backup in PITR.

e /FS, SAN-based snapshots, etc.



Tablespaces.

Tablespaces are a pain.
Only use them if you have a specific reason.
Fast/slow storage, reaching limits of a single volume, etc.

Understand that they will complicate backups and
replication.



Index Bloat.

e Index bloat can be a significant problem at this size.

e Space in indexes is harder to reclaim that space in the
heap.

e Reindex / replace scripts can be helpful here.



Write Capacity.

Write capacity might start being constrained.
Time to consider sharding.

Many options: Citus, Postgres-XL, custom application-
based sharding.

Also can significantly accelerate large-dataset reads.

Be prepared for the increase in administration complexity.






Wow.

e PostgreSQL can handle really huge databases.

e But you need to be prepared to make some complex
choices.

e Each large installation is unique, but...



What’s the working set?

e |f most of the data is just archival, performance will be
more manageable.

e But if it's archival, why not archive it?

e Separate the system into a transactional system and a
data warehouse.

e |ogical replication is great for this.



Large-Scale Sharding.

Instead of one gigantic database, or closely connected
nodes.

Geographic, enterprise, etc.
Multi-master tools, if necessary, to handle synchonization.

e Bucardo, 2nd Quadrant’s BDR.



Data Federation.

e Move archival data to alternative datastores.

e Or even into cold storage if it’s not required for
analytics.

e Use Foreign Data Wrappers to federate multiple
databases.

e Or just run big/small databases on the same PostgreSQL
iInstance.



In Sum.



PostgreSQL is amazing.

It can handle everything from your laptop to world-
spanning database environments.

It will grow with you.
Don’t over-tool your installation at each phase, but...

... keep one eye out for how to handle the next step.











http://thebuild.com

Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

thebuild.com

twitter @xof


mailto:christophe.pettus@pgexperts.com
http://thebuild.com

