
Hett ie Dombrovskaya

Database Arch i tect

PG Day Paris
2023

PostgreSQL and Software Engineers

A Database from Software Engineering
Perspective

2

Who Am I

Database Architect at DRW
Local Organizer of Chicago PostgreSQL User Group

PG Day Chicago is on April 20, 2023!

3

Why This
Topic?

• Because SE are our first and true
customers, but they often have
no voice in decision-making

• Because nobody wants to talk
about these issues

• Because I work with SE and hear
their complaints

4

Why Software
Engineers are
unhappy?

• DB design tools

• Version control

• Deployments

• Tooling

• Security and Access management

... To be continued

Because they
can’t work with
databases using
familiar
techniques

5

Design Tools

Do we have anything to offer?

But do they have other choices? It not
tables, then what?

We often ask SE to stay away
from designing tables.

NORM-GEN project partially
addresses this problem

6

ORM and Code
Generation

We hate ORM, but..

App Developers won’t go back to hand-
writing everything (and there is a
ChatGPT anyway!)

ORM provides the missing element

We do not have anything like that in
PostgreSQL – any tool which would
help to generate the DB code

7

Version
Control and
Compare

How can we version a database?

You use GitHub - greats, but your
database can live without it

For the start, a database can be
perfectly fine not storing any code
anywhere!

Is there any easy way to tell the
differences between two
databases/schemas?

8

What makes
two database
objects
different?
• If the order of columns is

different, are the tables
different?

• If a constraint name is
different, are tables
different?

9

• When you deploy a new version of an
application, you just compile the code. OK,
may be not “just”, but still.. Whatever is in
the GitHub, that’s what is running

• You can exactly do it with database
objects…

What does it mean to deploy
a database change?

Deployments!!!
• Request a separate deployment script

• Automatically generate a patch based on
the source code diff

• And we are back to the question of what
exactly makes two tables different

What are the options?

How to tell whether functions
are different?

10

• How to check for tables sizes?

• How to check bloat?

• How to check which process is blocking
me?

We do not have tools … for
anything

Tooling!
• They are all over internet and personal

hard drives

• Even professional consultants do not have
repositories for ”these scripts.”

• We “should not” use PostgreSQL catalog,
but we use it anyway => versioning

For pretty much all of that,
there are only “scripts”

Nobody validates them against
any changes in versions,
hardware, etc.

“Here is the
library I am
using” vs. ”Let
me give you a
script”

11

• Do we have a command for that?

• And no, I do not mean the list of all
granted roles

How can you find all
permission for a specific
user?

Security and
Access
Management

• Can two users do all the same things?

• Does it matter which role granted these
privileges?

How can you compare
permissions for two different
users?

How to compare permissions in
different environments?

We hate it when
applications are
connected to a
DB as superuser,
but there is a
reason for that!

12

We do not have solutions
for everything,

but we have some!

13

Welcome to
DIFF!

DIFF addresses three of the five
mentioned issues:

- Versioning

- Deployments

- Access control

If we want to compare two environments,
We do not look at the source code
And we do not look at deployments' logs
We look at PostgreSQL catalog(s)

https://github.com/hettie-d/diff

14

How DIFF works

- Clone the repo and run _load_all.sql from the root directory to install
locally. Do not install DIFF in the target databases. The installation
includes adding postgres_fdw extension

- Setup each of the environments you want to compare calling

diff.catalog_fdw_setup(
in p_database_alias text,
in p_database text,
in p_host text default 'localhost'::text,
in p_port text default null::text,
in p_user text default null::text,
in p_password text default null::text)

15

What can DIFF do

For any pair of databases

Compare:

• List of schemas/ownership
• List of tables/views/mviews in schema
• List of columns in the table(s)
• Column details (types, defaults, nullables)
• List of constraints
• Permissions

Generate patches

• to make one environment to look exactly like another one

16

Compare
schemas
select *

from diff.schema_compare(

‘airlines’,

‘hettie’);

17

Compare
tables/mviews
/views

select *

from diff.tables_compare(

'airlines’,

'hettie’,

'postgres_air');

18

Compare
columns

select *

from diff.columns_compare(

'airlines’,

'hettie’,

'postgres_air');

19

Compare
columns in a
table
select * from diff.columns_compare(

‘airlines’,

‘hettie’,

’postgres_air’,

‘'frequent_flyer’);

20

Complete columns compare
select *
from diff.full_columns_compare(
'hettie’,
'airlines’,
'postgres_air’,
'frequent_flyer');

21

Constraints compare

select * from diff.constraint_compare('airlines’,
'hettie’,
'postgres_air')

22

Generate patch
select * from diff.generate_patch_table (’hettie’,
‘airlines’,
’postgres_air’,
‘frequent_flyer’);

alter table postgres_air.frequent_flyer
add secondary_email text ;
alter column email drop NOT NULL;

select * from diff.generate_patch_table(‘airlines’,
’hettie’,
’postgres_air’,
‘frequent_flyer’);

alter table postgres_air.frequent_flyer drop secondary_email;
alter column email set NOT NULL

23

Generate constraint patch

select * from diff.generate_patch_constraint('airlines’,
'hettie’,
'postgres_air’,
'account');

alter table postgres_air.account drop constraint frequent_flyer_id_fk;

select * from diff.generate_patch_constraint('hettie’,
'airlines’,
'postgres_air’,
'account’);

alter table postgres_air.account add constraint frequent_flyer_id_fk
FOREIGN KEY (frequent_flyer_id) REFERENCES
postgres_air.frequent_flyer(frequent_flyer_id)

24

Tooling
No more “Let me give you a script”

25

• Security definer function & event triggers

• Enables granting individual permissions to
no-login roles and no-login roles to users

• Objects ownership and default permissions

Permissions management package

dba_tools
schema
All tools are ”packaged”, and deployed in
each new database.

Deployment is repeatable

New GitHub commit => deployment

• Tables/indexes sizes

• Tables/indexes bloat

• All you can find in Postgres Wiki and
anywhere on the internetJ

Objects sizes package

• Anything we use more than twice, is
packaged

• Any DBA on call can use it straight from DB

• PG version -independent

To be expanded

26

Access Management
Do not let me start!

27

How can you
figure out
what a user
can and can’t
do?

• There is no easy way!

28

Compare
privileges on
schemas

select * from diff.privs_compare(
'airlines’,
'hettie');

29

Compare
privileges on
tables
select * from
diff.privs_compare('airlines’,

'hettie’,

'postgres_air');

30

Compare
privileges on
tables
select * from diff.privs_compare(

'airlines’,

'hettie’,

'postgres_air_large');

31

Compare
privileges on
schemas
select * from
diff.priv_schema_compare(‘airline
s’,’hettie’);

32

Select
privileges
which are
granted
directly
select * from
diff.db_privs_direct_select('hettie’);

33

Compare all privileges

Different sets of privileges can result in identical sets of object
privileges.

grant select on all tables in schema sch to new_user;

grant select on sch.t1 to new_user;
grant select on sch.t2 to new_user;
…

grant select on sch.tn to new_user;

grant select on all tables in schema sch to sch_read_role;
grant sch_read_role to new_user;

How to compare the final result?

34

Dealing with recursive roles
WITH RECURSIVE x AS(

SELECT member::regrole,

roleid::regrole AS role,

roleid,

member::regrole || ' -> ' || roleid::regrole AS path

FROM pg_auth_members AS m

UNION ALL

SELECT x.member::regrole,

m.roleid::regrole,

m.roleid,

x.path || ' -> ' || m.roleid::regrole

FROM pg_auth_members AS m

JOIN x ON m.member = x.role

)

SELECT member, role, roleid, path

FROM x

WHERE member::text not like 'pg%'

AND member::text!='postgres'

AND member::text not like 'rds%'

and role::text not like 'pg%'

The whole function is 117 lines long …

35

Select all
privileges on a
database
select * from
diff.db_privs_select ('hettie’)

36

Future work

ØCompare indexes
ØCompare triggers
ØCompare functions and procedures
ØFinalize all patches generation

What should be documented in
PostgreSQL?

37

Other issues

Ø Usage of pgTap

Ø Designing tools

Ø Test data sets

Ø Branching data

3838

Q&A
Hettie Dombrovskaya
Database Architect DRW

hdombrovska@drwholdings.com
www.drw.com

http://www.drw.com/

