Calculating the future

How to model PostgreSQL performance

Dmitrii Dolgov

14-03-2024

& RedHat

> Why is it relevant for you?

- Back of the envelope calculations
-> Approximation

- Simulation

‘ RedHat

Why bother?

‘ RedHat

Benchmarking instead?

‘ RedHat

Benchmarking instead?

-» Resource intensive

‘ RedHat

Benchmarking instead?

> Resource intensive
> Hard to get full coverage

‘ RedHat

Benchmarking instead?

> Resource intensive
> Hard to get full coverage
> Requires cross validation

‘ RedHat

Benchmarking instead?

> Resource intensive
> Hard to get full coverage
> Requires cross validation

Enhance benchmarking!

‘ RedHat

It’s easy

‘ RedHat

It’s easy

> just bump max_wal_size?

‘ RedHat

It’s easy

> just bump max_wal_size?
> just increase shared_buffers?

‘ RedHat

It's easy

> just bump max_wal_size?
> just increase shared_buffers?
- just configure autovacuum?

‘ Red Hat

It's easy

> just bump max_wal_size?
> just increase shared_buffers?
- just configure autovacuum?

Well...

‘ Red Hat

spandrel columns X :roadway froming

soffit
arch rib

sKewback or springing
orch abutment

spon (4) |

‘ RedHat

Target of the experiment

‘ RedHat

create table test(a int);
create index on test(a) ;

& RedHat

create table test(a int);

create 1index on -;

& RedHat

Back of the envelope
calculations

‘ RedHat

Assuming we know the schema,
how to approximate space usage?

‘ RedHat

create table test(a int);
create index on test(a);

‘ RedHat

create table test(a int);
create index on test(a)
with (fillfactor = 100);

‘ RedHat

& RedHat

sy () 0 O 0 OO

Goetz Graefe. "Modern B-Tree Techniques.” Foundations and Trends in Databases 3.4 (2010) 203-402

‘ RedHat

oo [) L0 [l

Goetz Graefe. "Modern B-Tree Techniques.” Foundations and Trends in Databases 3.4 (2010) 203-402

‘ RedHat

10

8192 /0000

& RedHat

10

8192 /0040

(24

8192 /1668

(24 J(a] 4]) 4axa07)
[
\ 16)

10

10

8192 /8180

(7

4 x 407

(24 a4

| (@

12

16 x 407

1

Edvard Munch — The Scream (about a bloated index)

& RedHat

12

Assuming we know the workload,
how to approximate bloat?

‘ RedHat

13

-- -M prepared --rate=max-rate
\set aid random(@, N)
\set bid random(@, N)

-- a pre-populated table
update test set a = :aid
where a = :bid;

& RedHat

14

Dead tuples

B-Tree page, uniform point update

140 A

120 4

100 4

80

60 -

40 A

20 A

40

80

120

160 200 240 280 320 360
Time, sec

& RedHat

15

B-Tree, uniform point update

35000 1

30000 1

25000 1

20000 -

15000 A

Dead tuples

10000 A

5000 1

40

80

120

160 200 240 280 320 360
Time, sec

‘ RedHat

16

| see you've got
some dead tuples

‘ RedHat

Approximation

‘ RedHat

17

Assuming we know the workload,
how to approximate amount of I0?

‘ RedHat

18

create table test(a int);
create index on test(a)
with (fillfactor = 100);

‘ RedHat

18

create unlogged table test(a int);
create index on test(a)
with (fillfactor = 100);

‘ RedHat

18

create unlogged table test(a int);
create index on test(a)
with (fillfactor = 100);

autovacuum = off
* flush_after = 0
etc

‘ RedHat

19

-- -M prepared --rate=max-rate
\set aid random(@, N)

-- a pre-populated table
select = from test where a = :aild;

& RedHat

8000 1

6000 -

Read 10

4000 -

2000 1

B-Tree, uniform read

= Model
= Benchmark

20

256

512

76|8 10|24 12|80
shared_buffers, MB

15I36 17I92 20'43

& RedHat

21

-- -M prepared --rate=max-rate
\set aid random(@, N)

-— an empty table
insert into test values(:aid);

& RedHat

22

Write 10

B-Tree, uniform insert

1000 - = Model
= Benchmark
800 -
600 -
400 ~
200 A
0 250 500 750 1000 1250 1500 1750 2000
WAL delay

& RedHat

23

10 = Q'Mpressz

L N,
I=1 N

& RedHat

24

Read

_

10 = Q'Mpressz

Split
L
l:l%JrQw'Wg‘F%

Insert |

& RedHat

25

in 2021

d

vl [es.DC] 5]

w
o

rXiv:2101.013

Modeling the Linux page cache for accurate
simulation of data-intensive applications

Hoang-Dung Do, Valérie Hayot-Sasson®, Rafael Ferreira da

Ival, Christopher Steele®, Henri Casanoval, Tristan Glatard*

“Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

Department of Information and Computer

ences, University of Hawai‘i at Minoa, USA

FInformation Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
Department of Psychology, Concordia University, Montreal, Canada

Abstraci—The emergence of Big Data in recent years has
resulted in a_growing need for efficient data processing solu-
tions. While infrastructures with sufficient compute power are
available, the 10 bottleneck remains. The Linux page cache is an
efficient approach to reduce O overheads, but few experimental
studies of its interactions with Big Data applications exist, partly
due to limitations of real-world experiments. Simulation is a
popular approach to address these issucs, however, existing
simulation frameworks do not simulate page caching fully, or
even at all. As a resull, simulation-based penum.m studies of
data-ints lead fo i sulls.

In this paper, we propose an I/0 simulation model that
includes the key features of the Linux page cache. We have
implemented this model as part of the WRENCH warkflow
simulation framework, which itself builds on the popular Sim-
Grid distri systems simulk Our model
and its implementation cnable the simulation of both single-
threaded and multithreaded applications, and of hoth writehack
and writethrough caches for local or network-hased filesystems.
We evaluate the accuracy of our model in different conditions,
including sequential and concurrent applications, as well as local
and remate 1/0s. We find that our page cache model reduces the
simulation error by up to an order of magnitude when compared
to state-of-the-art, cacheless simulations.

L. INTRODUCTION

The Linux page cache plays an important role in reducing
filesystem data transfer times. With the page cache, previously
read data can be re-read direetly from memory, and written

type of hardware/software stacks are best suited to different
application classes, as well as understanding the limitations of
current algorithms, designs and technologies. Unfortunately,
performance studies relying on real-world experiments on

compute platforms face several difficulties (high operational
costs, labor-intensive experimental setups, shared platforms
with dynamic loads that hinder reproducibility of resulis) and
shortcomings (experiments are limited to the available plat-
form/software configurations, which precludes the exploration
of hypothetical seenarios). Simulations address these concerns
by providing models and abstractions for the performance
of computer hardware, such as CPU, network and storage.
As a result, simulations provide a costeffective, fast, easy

and reproducible way to evaluate application performance on
arbitrary platform configurations. It thus comes as no surprise
that a large number of simulation frameworks have been
developed and used for research and development [1], [2].
[31. 141, (51 (61, (7). [8]. [9). [10) [11]. [12]. [13].

Page caching is an ubiquitous technique for mitigating
the IO bottleneck. As such, s necessary Lo model it
when simulating data-intensive applications. While existing
simulation frameworks of parallel and distributed computing
systems caplure many relevant features of hardware/software
stacks, they lack the ability to simulate page cache with enough
to capture key features such as dirty data and cache

& RedHat

Simulation

‘ RedHat

26

Assuming we know the workload,
how to approximate query latency?

‘ RedHat

27

data Event

PqGetByte TxLatency
GetCachedPlan TxLatency
BtGetTuple TxLatency
BtInsert TxlLatency
HeapPagePrune TxlLatency
HeapUpdate TxLatency
CommitTx TxLatency
SocketFlush TxLatency

& RedHat

28

Frequency

pg_getbyte latency distribution, uniform update

30000 1

25000 1

20000 1

15000 A

10000 -

5000 1

50

100

150 200 250
Latency, microseconds

300

350

400

‘ RedHat

29

Summary

> Predicting the future is possible!

-> Be aware of limitations

-> Reduce large system to small parts

> Combine with benchmarking and profiling

‘ RedHat

30

Questions?

@ @erthalion@fosstodon.org
& ddolgov at redhat dot com

‘ RedHat

	Why bother?
	Target of the experiment
	Back of the envelope calculations
	Approximation
	Simulation

