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> Why is it relevant for you?

- Back of the envelope calculations
-> Approximation

- Simulation
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Why bother?
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Benchmarking instead?
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> Resource intensive
> Hard to get full coverage
> Requires cross validation

‘ RedHat



Benchmarking instead?

> Resource intensive
> Hard to get full coverage
> Requires cross validation

Enhance benchmarking!
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It’s easy
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It’s easy

> just bump max_wal_size?
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It’s easy

> just bump max_wal_size?
> just increase shared_buffers?
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It's easy

> just bump max_wal_size?
> just increase shared_buffers?
- just configure autovacuum?
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It's easy

> just bump max_wal_size?
> just increase shared_buffers?
- just configure autovacuum?

Well...
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Target of the experiment
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create table test(a int);
create index on test(a) ;
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create table test(a int);

create 1index on -;
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Back of the envelope
calculations
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Assuming we know the schema,
how to approximate space usage?
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create table test(a int);
create index on test(a);
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create table test(a int);
create index on test(a)
with (fillfactor = 100);
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Edvard Munch — The Scream (about a bloated index)
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Assuming we know the workload,
how to approximate bloat?
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-- -M prepared --rate=max-rate
\set aid random(@, N)
\set bid random(@, N)

-- a pre-populated table
update test set a = :aid
where a = :bid;
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Dead tuples

B-Tree page, uniform point update
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B-Tree, uniform point update
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| see you've got
some dead tuples
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Approximation
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Assuming we know the workload,
how to approximate amount of I0?
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create table test(a int);
create index on test(a)
with (fillfactor = 100);
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create unlogged table test(a int);
create index on test(a)
with (fillfactor = 100);
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create unlogged table test(a int);
create index on test(a)
with (fillfactor = 100);

# autovacuum = off
# * flush_after = 0
# etc
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-- -M prepared --rate=max-rate
\set aid random(@, N)

-- a pre-populated table
select = from test where a = :aild;
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-- -M prepared --rate=max-rate
\set aid random(@, N)

-— an empty table
insert into test values(:aid);
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Write 10

B-Tree, uniform insert
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Abstraci—The emergence of Big Data in recent years has
resulted in a_growing need for efficient data processing solu-
tions. While infrastructures with sufficient compute power are
available, the 10 bottleneck remains. The Linux page cache is an
efficient approach to reduce O overheads, but few experimental
studies of its interactions with Big Data applications exist, partly
due to limitations of real-world experiments. Simulation is a
popular approach to address these issucs, however, existing
simulation frameworks do not simulate page caching fully, or
even at all. As a resull, simulation-based penum.m studies of
data-ints lead fo i sulls.

In this paper, we propose an I/0 simulation model that
includes the key features of the Linux page cache. We have
implemented this model as part of the WRENCH warkflow
simulation framework, which itself builds on the popular Sim-
Grid distri systems simulk Our model
and its implementation cnable the simulation of both single-
threaded and multithreaded applications, and of hoth writehack
and writethrough caches for local or network-hased filesystems.
We evaluate the accuracy of our model in different conditions,
including sequential and concurrent applications, as well as local
and remate 1/0s. We find that our page cache model reduces the
simulation error by up to an order of magnitude when compared
to state-of-the-art, cacheless simulations.

L. INTRODUCTION

The Linux page cache plays an important role in reducing
filesystem data transfer times. With the page cache, previously
read data can be re-read direetly from memory, and written

type of hardware/software stacks are best suited to different
application classes, as well as understanding the limitations of
current algorithms, designs and technologies. Unfortunately,
performance studies relying on real-world experiments on

compute platforms face several difficulties (high operational
costs, labor-intensive experimental setups, shared platforms
with dynamic loads that hinder reproducibility of resulis) and
shortcomings (experiments are limited to the available plat-
form/software configurations, which precludes the exploration
of hypothetical seenarios). Simulations address these concerns
by providing models and abstractions for the performance
of computer hardware, such as CPU, network and storage.
As a result, simulations provide a costeffective, fast, easy

and reproducible way to evaluate application performance on
arbitrary platform configurations. It thus comes as no surprise
that a large number of simulation frameworks have been
developed and used for research and development [1], [2].
[31. 141, (51 (61, (7). [8]. [9). [10) [11]. [12]. [13].

Page caching is an ubiquitous technique for mitigating
the IO bottleneck. As such, s necessary Lo model it
when simulating data-intensive applications. While existing
simulation frameworks of parallel and distributed computing
systems caplure many relevant features of hardware/software
stacks, they lack the ability to simulate page cache with enough
to capture key features such as dirty data and cache
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Simulation

‘ RedHat



26

Assuming we know the workload,
how to approximate query latency?
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data Event

PqGetByte TxLatency
GetCachedPlan TxLatency
BtGetTuple TxLatency
BtInsert TxlLatency
HeapPagePrune TxlLatency
HeapUpdate TxLatency
CommitTx TxLatency
SocketFlush TxLatency
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Frequency

pg_getbyte latency distribution, uniform update
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Summary

> Predicting the future is possible!

-> Be aware of limitations

-> Reduce large system to small parts

> Combine with benchmarking and profiling
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Questions?

@ @erthalion@fosstodon.org
& ddolgov at redhat dot com
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