
Your remote PostgreSQL DBA Team

PostgreSQL worst practices
at PGDay.Paris 2024

Ilya Kosmodemiansky  
ik@dataegret.com

mailto:ik@dataegret.com


$ whoami
CEO und Founder @ Data Egret GmbH

Work with Postgres since 7.*

PostgreSQL Contributor

Co-organizer of PUG Frankfurt (am Main) and Postgres Europe
conferences

2





Best practices are just boring
Never follow them, try worst practices

Only those practices can really help you to screw the things up
most effectively

PostgreSQL consultants are nice people, so try to make them
happy

4



How it works
I have a list, a little bit more than 140 worst practices

I do not make this stuff up, all of them are real-life examples

I reshuffle my list every time before presenting and extract some
amount of examples

Well, there are some things, which I like more or less, so it is not a
very honest shuffle

5



0. Do not use indexes (a test one!)
Basically, there is no difference between full table scan and index
scan

You can check that. Just insert 10 rows into a test table on your
test server and compare.

Nobody deals with more than 10 row tables in production!

6



1. Try to create as many indexes as you can

Indexes consume no disk space

Indexes consume no shared_buffers

There is no overhead on DML if one and every column in a table
covered with bunch of indexes

Optimizer will definitely choose your index once you created it

Keep calm and create more indexes

7



2. Postgres likes long transactions
Always call external services from stored procedures (like sending
emails)

8



2. Postgres likes long transactions
Always call external services from stored procedures (like sending
emails)

Oh, it is arguable... It can be, if 100% of developers were familiar
with word timeout

9



2. Postgres likes long transactions
Always call external services from stored procedures (like sending
emails)

Oh, it is arguable... It can be, if 100% of developers were familiar
with word timeout

Anyway, you can just start transaction and go away for weekend

10



3. Massive DDLs can never harm your database

Put them all in a massive single transaction

forget about statement_timeout

Use "rush hour" and never discuss your plans with other teams

Leave it running and go for lunch

11



4. Always use defaults

Postgres can work on a big server as we as in a coffeemaker, we can
keep the same configuration

Never increase shared_buffers if your database is large

initdb --locale=C is always the best choice

Running Postgres without checksumms enabled would improve
your skills and experience

12



5. as a DBA, never talk to your developers team

You know things better

Developers exist to abuse databases, not to create any value for
the company

Best answers for any question are "No!" closely followed by
"Why?"

Teamwork is an artificial construct created by managers to make
DBAs busy

13



6. as a Developer, never talk to your DBAs team

You know things better

Nobody knows why DBAs are still exist, but you are here to create
value for the company

Never ask any question, when you ruin thing they might would
explain things anyway

Teamwork is an artificial construct created by managers to make
developers busy

14



7. Always keep all your time series data

Time series data like tables with logs or session history should be
never deleted, aggregated or archived, you always need to keep it
all

You will always know where to check, if you run out of disk space

You can always call that Big Data

Solve the problem using partitioning... one partition for an hour or
for a minute

15



8. Never upgrade your Postgres

Upgrades are complex and painful

They would be less complex and painful if you perform them as rare
as you can

Postgres is a dinosaur (as any RDBMS), you would never miss any
cool new feature if you upgrade ones in 10 years

16



9. Never use graphical monitoring

It allows you to tell what happened with Postgres for example
yesterday at 2:00 am

which makes your work routine and boring

It allows you to see the trend and prevent disasters

your boss would forget your phone number without those
disasters

17



10. Never use Foreign Keys
Consistency control at the application level always works as
expected

You will never get data inconsistency without constraints

Even if you already have a bulletproof framework to maintain
consistency, could it be a good enough reason to use it?

18



11. Turn autovacuum off

It is quite an auxiliary process, you can easily stop it

There is no problem at all to have 100Gb data in a database that is
1Tb in size

2-3Tb RAM servers are cheap, IO is the fastest thing in modern
computing

Besides that, everyone likes BigData

19



12. Be in trend, be schema-less

You do not need to design the schema

You need only one table, two columns: id bigserial and extra
jsonb

JSONB datatype is pretty effective in PostgreSQL, you can search
in it just like in a well-structured table

Even if you put a 500M of JSON in it

Even if you have 1000+ tps

20



13. Be agile, use EAV
You need only 3 tables: entity, attribute, value

21



13. Be agile, use EAV
You need only 3 tables: entity, attribute, value

At some point add the 4th: attribute_type

22



13. Be agile, use EAV
You need only 3 tables: entity, attribute, value

At some point add the 4th: attribute_type

Whet it starts to work slow, just call those four tables The Core
and add 1000+ tables with denormalized data

23



13. Be agile, use EAV
You need only 3 tables: entity, attribute, value

At some point add the 4th: attribute_type

Whet it starts to work slow, just call those four tables The Core
and add 1000+ tables with denormalized data

If it is not enough, you can always add value_version

24



14. Move joins to your application
Just select * a couple of tables into the application written in your
favorite programming language

Then join them at the application level

25



14. Move joins to your application
Just select * a couple of tables into the application written in your
favorite programming language

Then join them at the application level

Now you only need to implement nested loop join, hash join and
merge join as well as query optimizer and page cache

26



14. Move joins to your application
Just select * a couple of tables into the application written in your
favorite programming language

Then join them at the application level

Now you only need to implement nested loop join, hash join and
merge join as well as query optimizer and page cache

...and remember: SQL is specifically designed for the purpose,
you should never use such tools!

27



15. Need to run Postgres in a container?

Never use persistent storage

Always build your own container image

Never use any existing operator

28



16. Do everything under superuser

It keeps everything simple (up to certain moment)

If your application runs out of connections it always can use
superuser_reserved_connections

29



17. Are there better options as scram-sha-256?

md5 !

trust is even better

Make sure your passwords are in .pgpass laying everywhere

30



18. Always use timestamps without time zone

You application would always work in a single timezone

This timezone would never change

31



19. Even if you want to backup your database...

Use virtual machine snapshot

Use replication instead of backup

Use pg_dump instead of backup

Write your own backup script

As complicated as possible, combine all external tools you know

Never perform a test recovery

Do not use pgBackRest

32



And don't forget
That was WORST practice talk!

33



You can always use these slides and ideas

Under WPL aka Worst Practice Licence:

Take it!

Use it in production!

#blamemagnus

You also can share your results with me and I include them in my deck

34



But if you want to learn something more useful...

35



36


	PostgreSQL worst practices
	Ilya Kosmodemiansky  
	ik@dataegret.com

	$ whoami
	
	Best practices are just boring
	How it works
	0. Do not use indexes (a test one!)
	1. Try to create as many indexes as you can

	2. Postgres likes long transactions
	2. Postgres likes long transactions
	2. Postgres likes long transactions
	3. Massive DDLs can never harm your database
	4. Always use defaults
	5. as a DBA, never talk to your developers team
	6. as a Developer, never talk to your DBAs team
	7. Always keep all your time series data
	8. Never upgrade your Postgres
	9. Never use graphical monitoring

	10. Never use Foreign Keys
	11. Turn autovacuum off
	12. Be in trend, be schema-less

	13. Be agile, use EAV
	13. Be agile, use EAV
	13. Be agile, use EAV
	13. Be agile, use EAV
	14. Move joins to your application
	14. Move joins to your application
	14. Move joins to your application
	15. Need to run Postgres in a container?
	16. Do everything under superuser
	17. Are there better options as scram-sha-256?
	18. Always use timestamps without time zone
	19. Even if you want to backup your database...

	And don't forget
	You can always use these slides and ideas
	But if you want to learn something more useful...

	
	

