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Introduce a really elegant, 
yet sort of taken-for-granted, 
part of the query planner and 

trace its origins



CREATE TABLE t ( 
    a integer, 
    b integer 
); 
CREATE TABLE tt ( 
    c integer, 
    d integer 
); 

INSERT INTO t VALUES (1, 2); 
INSERT INTO tt VALUES (2, 2);



=# SELECT t.a, tt.c FROM t, tt 
-# WHERE t.b = tt.d; 

 a | c 
---+--- 
 1 | 2 
(1 row)



?

=# SELECT t.a, tt.c FROM t, tt 
-# WHERE t.b = tt.d; 

 a | c 
---+--- 
 1 | 2 
(1 row)



?

=# SELECT t.a, tt.c FROM t, tt 
-# WHERE t.b = tt.d; 

 a | c 
---+--- 
 1 | 2 
(1 row)



SELECT 
    n_name, 
    sum(l_extendedprice * (1 - l_discount)) as revenue 
FROM 
    customer, 
    orders, 
    lineitem, 
    supplier, 
    nation, 
    region 
WHERE 
    c_custkey = o_custkey 
    AND l_orderkey = o_orderkey 
    AND l_suppkey = s_suppkey 
    AND c_nationkey = s_nationkey 
    AND s_nationkey = n_nationkey 
    AND n_regionkey = r_regionkey 
    AND r_name = 'ASIA' 
    AND o_orderdate >= date '1994-01-01' 
    AND o_orderdate < date '1994-01-01' + interval '1' year 
GROUP BY 
    n_name 
ORDER BY 
    revenue desc;
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SELECT a, c FROM t, tt WHERE b = d;
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SELECT a, c FROM t, tt WHERE b = d;

Parser

Planner

Executor

Well defined

..rather 
complicated
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Join Order 
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Join Order 
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Given the set of relations and 
join clauses in a query, find 

the optimal order in which to 
access the relations in order 

to satisfy the query
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A ⨝ B ⨝ C ⨝ D



ABCD, ABDC, ADBC, DABC ...
N! join orderings:

A ⨝ B ⨝ C ⨝ D



ABCD, ABDC, ADBC, DABC ...

(((AB)C)D), ((AB)(CD)) ...

N! join orderings:

(N-1)! plans per join order:

⎨⎩ ⎭

A ⨝ B ⨝ C ⨝ D



4 way join     144 plans 

10 way join     1,316,818,944,000 plans 

20 way .. 

N! ✕ (N-1)! possible plans

☠ 💣



Naive, and/or, 
exhaustive 
approaches 
doesn't scale
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Branch Pruning

Rule based

Tree transformation

Memoization
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http://www.computerhistory.org/timeline/1979/



System/R 



https://www.youtube.com/watch?v=bvnWpTJPPUg

Patricia Selinger



https://www.youtube.com/watch?v=bvnWpTJPPUg

Selinger, P. G.; Astrahan, M. M.; Chamberlin, D. 
D.; Lorie, R. A.; Price, T. G. (1979), "Access Path 
Selection in a Relational Database Management 
System", Proceedings of the 1979 ACM SIGMOD 
International Conference on Management of Data, 
pp. 23–34
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Selinger Algoritm
Step 1 ● Enumerate all access paths to individual relations, 
keep the cheapest around

Step 3 ● Consider all ways to join 3 relations, reusing cached 
calculations from step 2

Step n ● Consider all ways to join n relations, reusing cached 
calculations from step n-1

...

Step 2 ● Consider all ways to join two relations, using best 
access path as computed in step one

Cost based

Dynamic Programming



A ⨝ B ⨝ C ⨝ D



A = OptimalAccess(Arelation); 
B = OptimalAccess(Brelation); 
...

Step 1 . Access Paths



{A,B} = Cheapest(AB,BA); 
{B,C} = Cheapest(BC,CB); 
...

Step 2 . 2-way Join



{A,B,C} = Cheapest(A{B,C}, {B,C}A, 
                   B{A,C}, {A,C}B, 
                   C{A,B}, {A,B}C);
{A,B,D} = Cheapest(A{B,D}, {B,D}A, 
                   B{A,D}, {A,D}B, 
                   D{A,B}, {A,B}D);

...

Step 3 . 3-way Join



{A,B,C} = Cheapest(A{B,C}, {B,C}A, 
                   B{A,C}, {A,C}B, 
                   C{A,B}, {A,B}C);
{A,B,D} = Cheapest(A{B,D}, {B,D}A, 
                   B{A,D}, {A,D}B, 
                   D{A,B}, {A,B}D);

...
Precomputed 
in step 2

Step 3 . 3-way Join



{A,B,C,D} = ...

Step n . n-way Join



{A,B,C,D} = ...

Step n . n-way Join

Cheapest join order for query reached



Selinger Extensions

Cheapest join order with the 
correct ordering iff cheaper than 
cheapest overall + final sort-step

Step 1 ● Enumerate all access paths to individual relations, 
keep the cheapest for all interesting orderings around

Step 1 ● Enumerate all access paths to individual relations, 
keep the cheapest around



© Tomas Vondra



geqo_threshold

Relations 
in query

Selinger Algorithm

GEQO - Genetic Query 
Optimizer



geqo_threshold

Relations 
in query

Selinger Algorithm

GEQO - Genetic Query 
Optimizer

Default: 12



GEQO

Travelling salesman algorithm 
across the relations

Heuristics required as the 
search space increase

..not terribly good, but better 
than waiting till the heat death 

of the universe



PostgreSQL  ❤  Selinger

Keep interesting sort orders around

Use existing join clauses when 
possible, only attempt cartesian-

product join when no clause

Bushy trees   {AB}{CD}



{1 2},{1 3},{1 4} 
{1 2 3},{1 3 4},{1 2 4} 
{1 2 3 4}

SELECT  * 
FROM    tab1, tab2, tab3, tab4 
WHERE   tab1.col = tab2.col AND 
        tab1.col = tab3.col AND 
        tab1.col = tab4.col

PostgreSQL  ❤  Selinger
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Code



RelOptInfo * 
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) 
{ 
 int   lev; 
 RelOptInfo *rel; 

 /* 
  * This function cannot be invoked recursively within any one planning 
  * problem, so join_rel_level[] can't be in use already. 
  */ 
 Assert(root->join_rel_level == NULL); 

 /* 
  * We employ a simple "dynamic programming" algorithm: we first find all 
  * ways to build joins of two jointree items, then all ways to build joins 
  * of three items (from two-item joins and single items), then four-item 
  * joins, and so on until we have considered all ways to join all the 
  * items into one rel. 
  * 
  * root->join_rel_level[j] is a list of all the j-item rels.  Initially we 
  * set root->join_rel_level[1] to represent all the single-jointree-item 
  * relations. 
  */ 
 root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); 

 root->join_rel_level[1] = initial_rels; 

 for (lev = 2; lev <= levels_needed; lev++) 
 { 
  ListCell   *lc; 

  /* 
   * Determine all possible pairs of relations to be joined at this 
   * level, and build paths for making each one from every available 
   * pair of lower-level relations. 
   */ 
  join_search_one_level(root, lev); 

  /* 
   * Run generate_gather_paths() for each just-processed joinrel.  We 
   * could not do this earlier because both regular and partial paths 
   * can get added to a particular joinrel at multiple times within 
   * join_search_one_level.  After that, we're done creating paths for 
   * the joinrel, so run set_cheapest(). 
   */ 
  foreach(lc, root->join_rel_level[lev]) 
  { 
   rel = (RelOptInfo *) lfirst(lc); 

   /* Create GatherPaths for any useful partial paths for rel */ 
   generate_gather_paths(root, rel); 

   /* Find and save the cheapest paths for this rel */ 
   set_cheapest(rel); 

#ifdef OPTIMIZER_DEBUG 
   debug_print_rel(root, rel); 
#endif 
  } 
 } 

 /* 
  * We should have a single rel at the final level. 
  */ 
 if (root->join_rel_level[levels_needed] == NIL) 
  elog(ERROR, "failed to build any %d-way joins", levels_needed); 
 Assert(list_length(root->join_rel_level[levels_needed]) == 1); 

 rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); 

 root->join_rel_level = NULL; 

 return rel; 
}

RelOptInfo * 
standard_join_search( 
    PlannerInfo *root, 
    int levels_needed, 
    List *initial_rels);



RelOptInfo * 
standard_join_search( 
    PlannerInfo *root, 
    int levels_needed, 
    List *initial_rels);

RelOptInfo * 
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) 
{ 
 int   lev; 
 RelOptInfo *rel; 

 /* 
  * This function cannot be invoked recursively within any one planning 
  * problem, so join_rel_level[] can't be in use already. 
  */ 
 Assert(root->join_rel_level == NULL); 

 /* 
  * We employ a simple "dynamic programming" algorithm: we first find all 
  * ways to build joins of two jointree items, then all ways to build joins 
  * of three items (from two-item joins and single items), then four-item 
  * joins, and so on until we have considered all ways to join all the 
  * items into one rel. 
  * 
  * root->join_rel_level[j] is a list of all the j-item rels.  Initially we 
  * set root->join_rel_level[1] to represent all the single-jointree-item 
  * relations. 
  */ 
 root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); 

 root->join_rel_level[1] = initial_rels; 

 for (lev = 2; lev <= levels_needed; lev++) 
 { 
  ListCell   *lc; 

  /* 
   * Determine all possible pairs of relations to be joined at this 
   * level, and build paths for making each one from every available 
   * pair of lower-level relations. 
   */ 
  join_search_one_level(root, lev); 

  /* 
   * Run generate_gather_paths() for each just-processed joinrel.  We 
   * could not do this earlier because both regular and partial paths 
   * can get added to a particular joinrel at multiple times within 
   * join_search_one_level.  After that, we're done creating paths for 
   * the joinrel, so run set_cheapest(). 
   */ 
  foreach(lc, root->join_rel_level[lev]) 
  { 
   rel = (RelOptInfo *) lfirst(lc); 

   /* Create GatherPaths for any useful partial paths for rel */ 
   generate_gather_paths(root, rel); 

   /* Find and save the cheapest paths for this rel */ 
   set_cheapest(rel); 

#ifdef OPTIMIZER_DEBUG 
   debug_print_rel(root, rel); 
#endif 
  } 
 } 

 /* 
  * We should have a single rel at the final level. 
  */ 
 if (root->join_rel_level[levels_needed] == NIL) 
  elog(ERROR, "failed to build any %d-way joins", levels_needed); 
 Assert(list_length(root->join_rel_level[levels_needed]) == 1); 

 rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); 

 root->join_rel_level = NULL; 

 return rel; 
}

/* 
 * We employ a simple "dynamic programming" algorithm: we 
 * first find all ways to build joins of two jointree 
 * items, then all ways to build joins of three items 
 * (from two-item joins and single items), then four-item 
 * joins, and so on until we have considered all ways to 
 * join all the items into one rel. 
 */ 
for (lev = 2; lev <= levels_needed; lev++)
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RelOptInfo * 
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) 
{ 
 int   lev; 
 RelOptInfo *rel; 

 /* 
  * This function cannot be invoked recursively within any one planning 
  * problem, so join_rel_level[] can't be in use already. 
  */ 
 Assert(root->join_rel_level == NULL); 

 /* 
  * We employ a simple "dynamic programming" algorithm: we first find all 
  * ways to build joins of two jointree items, then all ways to build joins 
  * of three items (from two-item joins and single items), then four-item 
  * joins, and so on until we have considered all ways to join all the 
  * items into one rel. 
  * 
  * root->join_rel_level[j] is a list of all the j-item rels.  Initially we 
  * set root->join_rel_level[1] to represent all the single-jointree-item 
  * relations. 
  */ 
 root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); 

 root->join_rel_level[1] = initial_rels; 

 for (lev = 2; lev <= levels_needed; lev++) 
 { 
  ListCell   *lc; 

  /* 
   * Determine all possible pairs of relations to be joined at this 
   * level, and build paths for making each one from every available 
   * pair of lower-level relations. 
   */ 
  join_search_one_level(root, lev); 

  /* 
   * Run generate_gather_paths() for each just-processed joinrel.  We 
   * could not do this earlier because both regular and partial paths 
   * can get added to a particular joinrel at multiple times within 
   * join_search_one_level.  After that, we're done creating paths for 
   * the joinrel, so run set_cheapest(). 
   */ 
  foreach(lc, root->join_rel_level[lev]) 
  { 
   rel = (RelOptInfo *) lfirst(lc); 

   /* Create GatherPaths for any useful partial paths for rel */ 
   generate_gather_paths(root, rel); 

   /* Find and save the cheapest paths for this rel */ 
   set_cheapest(rel); 

#ifdef OPTIMIZER_DEBUG 
   debug_print_rel(root, rel); 
#endif 
  } 
 } 

 /* 
  * We should have a single rel at the final level. 
  */ 
 if (root->join_rel_level[levels_needed] == NIL) 
  elog(ERROR, "failed to build any %d-way joins", levels_needed); 
 Assert(list_length(root->join_rel_level[levels_needed]) == 1); 

 rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); 

 root->join_rel_level = NULL; 

 return rel; 
}

/* 
 * Determine all possible pairs of relations to be joined at this 
 * level, and build paths for making each one from every available 
 * pair of lower-level relations. 
 */ 
join_search_one_level(root, lev);



RelOptInfo * 
standard_join_search( 
    PlannerInfo *root, 
    int levels_needed, 
    List *initial_rels);

RelOptInfo * 
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) 
{ 
 int   lev; 
 RelOptInfo *rel; 

 /* 
  * This function cannot be invoked recursively within any one planning 
  * problem, so join_rel_level[] can't be in use already. 
  */ 
 Assert(root->join_rel_level == NULL); 

 /* 
  * We employ a simple "dynamic programming" algorithm: we first find all 
  * ways to build joins of two jointree items, then all ways to build joins 
  * of three items (from two-item joins and single items), then four-item 
  * joins, and so on until we have considered all ways to join all the 
  * items into one rel. 
  * 
  * root->join_rel_level[j] is a list of all the j-item rels.  Initially we 
  * set root->join_rel_level[1] to represent all the single-jointree-item 
  * relations. 
  */ 
 root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); 

 root->join_rel_level[1] = initial_rels; 

 for (lev = 2; lev <= levels_needed; lev++) 
 { 
  ListCell   *lc; 

  /* 
   * Determine all possible pairs of relations to be joined at this 
   * level, and build paths for making each one from every available 
   * pair of lower-level relations. 
   */ 
  join_search_one_level(root, lev); 

  /* 
   * Run generate_gather_paths() for each just-processed joinrel.  We 
   * could not do this earlier because both regular and partial paths 
   * can get added to a particular joinrel at multiple times within 
   * join_search_one_level.  After that, we're done creating paths for 
   * the joinrel, so run set_cheapest(). 
   */ 
  foreach(lc, root->join_rel_level[lev]) 
  { 
   rel = (RelOptInfo *) lfirst(lc); 

   /* Create GatherPaths for any useful partial paths for rel */ 
   generate_gather_paths(root, rel); 

   /* Find and save the cheapest paths for this rel */ 
   set_cheapest(rel); 

#ifdef OPTIMIZER_DEBUG 
   debug_print_rel(root, rel); 
#endif 
  } 
 } 

 /* 
  * We should have a single rel at the final level. 
  */ 
 if (root->join_rel_level[levels_needed] == NIL) 
  elog(ERROR, "failed to build any %d-way joins", levels_needed); 
 Assert(list_length(root->join_rel_level[levels_needed]) == 1); 

 rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); 

 root->join_rel_level = NULL; 

 return rel; 
}

/* Find and save the cheapest paths for this rel */ 
set_cheapest(rel);



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
      old_rel, 
      other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
           old_rel, 

         list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
           old_rel, 
           list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

void 
join_search_one_level(PlannerInfo *root, 
                      int level)



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
      old_rel, 
      other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
           old_rel, 

         list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
           old_rel, 
           list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

void 
join_search_one_level(PlannerInfo *root, 
                      int level)

/* 
 * join_search_one_level 
 *   Consider ways to produce join relations containing 
 *  exactly 'level' jointree items.  (This is one step of 
 *  the dynamic-programming method embodied in 
 *  standard_join_search.)  Join rel nodes for each 
 *  feasible combination of lower-level rels are created 
 *  and returned in a list. Implementation paths are 
 * created for each such joinrel, too. 
 * 
 * level: level of rels we want to make this time 
 * root->join_rel_level[j], 1 <= j < level, is a list of  
 * rels containing j items 
 * 
 * The result is returned in root->join_rel_level[level]. 
 */



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
      old_rel, 
      other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
           old_rel, 

         list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
           old_rel, 
           list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

void 
join_search_one_level(PlannerInfo *root, 
                      int level)

/* 
 * First, consider left-sided and right-sided plans, 
 * in which rels of exactly level-1 member relations 
 * are joined against initial relations. We prefer to 
 * join using join clauses, but if we find a rel of 
 * level-1 members that has no join clauses, we will 
 * generate Cartesian-product joins against all initial 
 * rels not already contained in it. 
 */ 
foreach(r, joinrels[level - 1])



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
      old_rel, 
      other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
           old_rel, 

         list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
           old_rel, 
           list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

void 
join_search_one_level(PlannerInfo *root, 
                      int level)

/* 
 * First, consider left-sided and right-sided plans, 
 * in which rels of exactly level-1 member relations 
 * are joined against initial relations. We prefer to 
 * join using join clauses, but if we find a rel of 
 * level-1 members that has no join clauses, we will 
 * generate Cartesian-product joins against all initial 
 * rels not already contained in it. 
 */ 
foreach(r, joinrels[level - 1])

A{B,C}, {B,C}A, B{A,C}, {A,C}B ..



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
      old_rel, 
      other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
           old_rel, 

         list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
           old_rel, 
           list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

void 
join_search_one_level(PlannerInfo *root, 
                      int level)

/* 
 * Now, consider "bushy plans" in which relations of k 
 * initial rels are joined to relations of level-k 
 * initial rels, for 2 <= k <= level-2. 
 * 
 * We only consider bushy-plan joins for pairs of rels 
 * where there is a suitable join clause (or join order 
 * restriction), in order to avoid unreasonable growth 
 * of planning time. 
 */ 
for (k = 2;; k++)



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
      old_rel, 
      other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
           old_rel, 

         list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
           old_rel, 
           list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

void 
join_search_one_level(PlannerInfo *root, 
                      int level)

/* 
 * Now, consider "bushy plans" in which relations of k 
 * initial rels are joined to relations of level-k 
 * initial rels, for 2 <= k <= level-2. 
 * 
 * We only consider bushy-plan joins for pairs of rels 
 * where there is a suitable join clause (or join order 
 * restriction), in order to avoid unreasonable growth 
 * of planning time. 
 */ 
for (k = 2;; k++)

{A,B}{B,C}, {A,C}{B,C}



void 
join_search_one_level(PlannerInfo *root, int level) 
{ 
 List   **joinrels = root->join_rel_level; 
 ListCell   *r; 
 int   k; 

 Assert(joinrels[level] == NIL); 

 /* Set join_cur_level so that new joinrels are added to proper list */ 
 root->join_cur_level = level; 

 foreach(r, joinrels[level - 1]) 
 { 
  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins || 
   has_join_restriction(root, old_rel)) 
  { 
   ListCell   *other_rels; 

   if (level == 2)  /* consider remaining initial rels */ 
    other_rels = lnext(r); 
   else    /* consider all initial rels */ 
    other_rels = list_head(joinrels[1]); 

   make_rels_by_clause_joins(root, 
           old_rel, 
           other_rels); 
  } 
  else 
  { 
   make_rels_by_clauseless_joins(root, 
            old_rel, 
            list_head(joinrels[1])); 
  } 
 } 

 for (k = 2;; k++) 
 { 
  int   other_level = level - k; 

  if (k > other_level) 
   break; 

  foreach(r, joinrels[k]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 
   ListCell   *other_rels; 
   ListCell   *r2; 

   if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins && 
    !has_join_restriction(root, old_rel)) 
    continue; 

   if (k == other_level) 
    other_rels = lnext(r); /* only consider remaining rels */ 
   else 
    other_rels = list_head(joinrels[other_level]); 

   for_each_cell(r2, other_rels) 
   { 
    RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2); 

    if (!bms_overlap(old_rel->relids, new_rel->relids)) 
    { 
     if (have_relevant_joinclause(root, old_rel, new_rel) || 
      have_join_order_restriction(root, old_rel, new_rel)) 
     { 
      (void) make_join_rel(root, old_rel, new_rel); 
     } 
    } 
   } 
  } 
 } 
 if (joinrels[level] == NIL) 
 { 
  foreach(r, joinrels[level - 1]) 
  { 
   RelOptInfo *old_rel = (RelOptInfo *) lfirst(r); 

   make_rels_by_clauseless_joins(root, 
            old_rel, 
            list_head(joinrels[1])); 
  } 

  if (joinrels[level] == NIL && 
   root->join_info_list == NIL && 
   !root->hasLateralRTEs) 
   elog(ERROR, "failed to build any %d-way joins", level); 
 } 
}

/* 
 * Since make_join_rel(x, y) handles both x,y and y,x 
 * cases, we only need to go as far as the halfway point. 
 */ 
if (k > other_level) 
 break;
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ABSTRACT
Finding a good join order is crucial for query performance. In this
paper, we introduce the Join Order Benchmark (JOB) and exper-
imentally revisit the main components in the classic query opti-
mizer architecture using a complex, real-world data set and realistic
multi-join queries. We investigate the quality of industrial-strength
cardinality estimators and find that all estimators routinely produce
large errors. We further show that while estimates are essential for
finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates. Using an-
other set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION
The problem of finding a good join order is one of the most stud-

ied problems in the database field. Figure 1 illustrates the classical,
cost-based approach, which dates back to System R [36]. To obtain
an efficient query plan, the query optimizer enumerates some subset
of the valid join orders, for example using dynamic programming.
Using cardinality estimates as its principal input, the cost model
then chooses the cheapest alternative from semantically equivalent
plan alternatives.

Theoretically, as long as the cardinality estimations and the cost
model are accurate, this architecture obtains the optimal query plan.
In reality, cardinality estimates are usually computed based on sim-
plifying assumptions like uniformity and independence. In real-
world data sets, these assumptions are frequently wrong, which
may lead to sub-optimal and sometimes disastrous plans.

In this experiments and analyses paper we investigate the three
main components of the classical query optimization architecture
in order to answer the following questions:

• How good are cardinality estimators and when do bad esti-
mates lead to slow queries?

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.
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Figure 1: Traditional query optimizer architecture

• How important is an accurate cost model for the overall query
optimization process?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows
us to isolate the influence of the individual optimizer components
on query performance. Our experiments are conducted using a real-
world data set and 113 multi-join queries that provide a challeng-
ing, diverse, and realistic workload. Another novel aspect of this
paper is that it focuses on the increasingly common main-memory
scenario, where all data fits into RAM.

The main contributions of this paper are listed in the following:

• We design a challenging workload named Join Order Bench-
mark (JOB), which is based on the IMDB data set. The
benchmark is publicly available to facilitate further research.

• To the best of our knowledge, this paper presents the first
end-to-end study of the join ordering problem using a real-
world data set and realistic queries.

• By quantifying the contributions of cardinality estimation,
the cost model, and the plan enumeration algorithm on query
performance, we provide guidelines for the complete design
of a query optimizer. We also show that many disastrous
plans can easily be avoided.

The rest of this paper is organized as follows: We first discuss
important background and our new benchmark in Section 2. Sec-
tion 3 shows that the cardinality estimators of the major relational
database systems produce bad estimates for many realistic queries,
in particular for multi-join queries. The conditions under which
these bad estimates cause slow performance are analyzed in Sec-
tion 4. We show that it very much depends on how much the
query engine relies on these estimates and on how complex the
physical database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table scans,
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other set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION
The problem of finding a good join order is one of the most stud-

ied problems in the database field. Figure 1 illustrates the classical,
cost-based approach, which dates back to System R [36]. To obtain
an efficient query plan, the query optimizer enumerates some subset
of the valid join orders, for example using dynamic programming.
Using cardinality estimates as its principal input, the cost model
then chooses the cheapest alternative from semantically equivalent
plan alternatives.

Theoretically, as long as the cardinality estimations and the cost
model are accurate, this architecture obtains the optimal query plan.
In reality, cardinality estimates are usually computed based on sim-
plifying assumptions like uniformity and independence. In real-
world data sets, these assumptions are frequently wrong, which
may lead to sub-optimal and sometimes disastrous plans.
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• How important is an accurate cost model for the overall query
optimization process?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows
us to isolate the influence of the individual optimizer components
on query performance. Our experiments are conducted using a real-
world data set and 113 multi-join queries that provide a challeng-
ing, diverse, and realistic workload. Another novel aspect of this
paper is that it focuses on the increasingly common main-memory
scenario, where all data fits into RAM.

The main contributions of this paper are listed in the following:

• We design a challenging workload named Join Order Bench-
mark (JOB), which is based on the IMDB data set. The
benchmark is publicly available to facilitate further research.

• To the best of our knowledge, this paper presents the first
end-to-end study of the join ordering problem using a real-
world data set and realistic queries.

• By quantifying the contributions of cardinality estimation,
the cost model, and the plan enumeration algorithm on query
performance, we provide guidelines for the complete design
of a query optimizer. We also show that many disastrous
plans can easily be avoided.

The rest of this paper is organized as follows: We first discuss
important background and our new benchmark in Section 2. Sec-
tion 3 shows that the cardinality estimators of the major relational
database systems produce bad estimates for many realistic queries,
in particular for multi-join queries. The conditions under which
these bad estimates cause slow performance are analyzed in Sec-
tion 4. We show that it very much depends on how much the
query engine relies on these estimates and on how complex the
physical database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table scans,
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“In this paper we have provided quantitative 
evidence for conventional wisdom that has 
been accumulated in three decades of  practical 
experience with query optimizers.  We have 
shown that query optimization is essential for 
efficient query processing and that exhaustive 
enumeration algorithms find better plans 
than heuristics.
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Abstract—Finding an optimal execution order of join opera-
tions is a crucial task in every cost-based query optimizer. Since
there are many possible join trees for a given query, the overhead
of the join (tree) enumeration algorithm per valid join tree should
be minimal. In the case of a clique-shaped query graph, the best
known top-down algorithm has a complexity of Θ(n2) per join
tree, where n is the number of relations. In this paper, we present
an algorithm that has an according O(1) complexity in this case.

We show experimentally that this more theoretical result has
indeed a high impact on the performance in other non-clique
settings. This is especially true for cyclic query graphs. Further,
we evaluate the performance of our new algorithm and compare
it with the best top-down and bottom-up algorithms described
in the literature.

I. INTRODUCTION

For a DBMS that provides support for a declarative query
language like SQL, the query optimizer is a crucial piece of
software. The declarative nature of a query allows it to be
translated into many equivalent evaluation plans. The process
of choosing a suitable plan from all alternatives is known as
query optimization. The basis of this choice are a cost model
and statistics over the data. Essential for the costs of a plan
is the execution order of join operations in its operator tree,
since the runtime of plans with different join orders can vary
by several orders of magnitude. An exhaustive search for an
optimal solution over all possible operator trees is computa-
tionally infeasible. To decrease complexity, the search space
must be restricted. For the optimization problem discussed
in this document, a well-accepted heuristic is applied: We
consider all possible bushy join trees [1], but exclude cross
products from the search, presuming that all considered queries
span a connected query graph [2].

When designing a query optimizer, there are two strategies
to find an optimal join order: bottom-up join enumeration
via dynamic programming, and top-down join enumeration
through memoization. Both approaches (naturally) have to
explore the same search space and both face the same chal-
lenges. Let us briefly recall this challenge. This requires a little
preparation.

For every subset S of relations that induces a connected
subgraph (csg for short) the optimal join tree must be
constructed. In order to determine the best join tree for a given
subset S of relations, the plan generator must enumerate all
partitions (S1, S2) of S such that S = S1∪S2 and S1∩S2 = ∅.

Furthermore, since we exclude cross products, S1 and S2 must
induce connected subgraphs of our query graph, and there
must be two relations R1 ∈ S1 and R2 ∈ S2 such that they are
connected by an edge, i.e., there must exist a join predicate
involving attributes in R1 and R2. Let us call such a partition
(S1, S2) a csg-cmp-pair (or ccp for short). Denote by Ti the
best plan for Si. Then the query optimizer has to consider the
plans T1 ✶ T2 for all csg-cmp-pairs (S1, S2).

One possibility to generate all csg-cmp-pairs for a set S
of relations is to consider all subsets S1 ⊂ S, define S2 =
S \ S1, and then check the above conditions. Let us call such
a procedure naive generate and test or ngt for short.

Table I gives for n = 5, 10, 15, 20 relations the number
of connected subgraphs (#csg), the number of csg-cmp-pairs
(#ccp), and the number of generated subsets S1 for the
naive generate and test algorithm (#ngt). These numbers were
determined analytically ([2], [3]), but the formulas are not very
intuitive. Therefore, we decided to illustrate our points with
some explicit numbers1.

Challenge. The number of subsets considered by naive
generate and test is several orders of magnitude higher than the
number of csg-cmp-pairs. Thus, this approach is too inefficient
to be useful (see also Sec. IV-D). Hence, the challenge is
to generate only valid csg-cmp-pairs and to do this with as
little overhead as possible. For quite a long time, no efficient
enumerator for csg-cmp-pairs was known. In bottom-up join
enumeration, all the connected subsets for a given set are
already generated. Therefore, an enumeration strategy for dy-
namic programming that is not generate-and-test based should
be easier to design. Moerkotte and Neumann [3] presented a
dynamic programming variant called DPCCP generating csg-
cmp-pairs within constant time O(1) each. DeHaan and Tompa
took up the even greater challenge and came up with a minimal
graph cut partitioning algorithm called MINCUTLAZY for top-
down join enumeration [4]2. In case of acyclic query graphs,
the complexity for generating a csg-cmp-pair is also O(1).
However, for cyclic query graphs the complexity increases
and reaches a maximum for cliques, where it is O(n2) for
n relations (see appendix).

1The difference by a factor of two between #ccp and #ngt for cliques is
explained in the next section.

2Actually, they presented two algorithms, but one does not completely
enumerate all csg-cmp-pairs.
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determined analytically ([2], [3]), but the formulas are not very
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generate and test is several orders of magnitude higher than the
number of csg-cmp-pairs. Thus, this approach is too inefficient
to be useful (see also Sec. IV-D). Hence, the challenge is
to generate only valid csg-cmp-pairs and to do this with as
little overhead as possible. For quite a long time, no efficient
enumerator for csg-cmp-pairs was known. In bottom-up join
enumeration, all the connected subsets for a given set are
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namic programming that is not generate-and-test based should
be easier to design. Moerkotte and Neumann [3] presented a
dynamic programming variant called DPCCP generating csg-
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took up the even greater challenge and came up with a minimal
graph cut partitioning algorithm called MINCUTLAZY for top-
down join enumeration [4]2. In case of acyclic query graphs,
the complexity for generating a csg-cmp-pair is also O(1).
However, for cyclic query graphs the complexity increases
and reaches a maximum for cliques, where it is O(n2) for
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ABSTRACT
Two highly e�cient algorithms are known for optimally or-
dering joins while avoiding cross products: DPccp, which is
based on dynamic programming, and Top-Down Partition
Search, based on memoization. Both have two severe limi-
tations: They handle only (1) simple (binary) join predicates
and (2) inner joins. However, real queries may contain com-
plex join predicates, involving more than two relations, and
outer joins as well as other non-inner joins.

Taking the most e�cient known join-ordering algorithm,
DPccp, as a starting point, we first develop a new algorithm,
DPhyp, which is capable to handle complex join predicates
e�ciently. We do so by modeling the query graph as a (vari-
ant of a) hypergraph and then reason about its connected
subgraphs. Then, we present a technique to exploit this ca-
pability to e�ciently handle the widest class of non-inner
joins dealt with so far. Our experimental results show that
this reformulation of non-inner joins as complex predicates
can improve optimization time by orders of magnitude, com-
pared to known algorithms dealing with complex join pred-
icates and non-inner joins. Once again, this gives dynamic
programming a distinct advantage over current memoization
techniques.

Categories and Subject Descriptors
H.2 [Systems]: Query processing

General Terms
Algorithms, Theory

1. INTRODUCTION
For the overall performance of a database management

system, the cost-based query optimizer is an essential piece
of software. One important and complex problem any cost-
based query optimizer has to solve is to find the optimal
join order. In their seminal paper, Selinger et al. not only
introduced cost-based query optimization but also proposed
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a dynamic programming algorithm to find the optimal join
order for a given conjunctive query [21]. More precisely, they
proposed to generate plans in the order of increasing size.
Although they restricted the search space to left-deep trees,
the general idea of their algorithm can be extended to the
algorithm DPsize, which explores the space of bushy trees
(see Fig. 1). The algorithm still forms the core of state-
of-the-art commercial query optimizers like the one of DB2
[12].

Recently, we gave a thorough complexity analysis of DP-

size [17]. We proved that DPsize has a runtime complexity
which is much worse than the lower bound. This is mainly
due to the tests (marked by ’*’ in Fig. 1), which fail far
more often than they succeed. Furthermore, we proposed
the algorithm DPccp, which exactly meets the lower bound.
Experiments showed that DPccp is highly superior to DPsize.
The core of their algorithm generates connected subgraphs
in a bottom-up fashion.

The main competitor for dynamic programming is mem-
oization, which generates plans in a top-down fashion. All
known approaches needed tests similar to those shown for
DPsize. Thus, with the advent of DPccp, dynamic program-
ming became superior to memoization when it comes to gen-
erating optimal bushy join trees, which do not contain cross
products. Challenged by this finding, DeHaan and Tompa
successfully devised a top-down algorithm that is capable of
generating connected subgraphs by exploiting minimal cuts
[7]. With this algorithm, called Top-Down Partition Search,
memoization can be almost as e�cient as dynamic program-
ming.

However, both algorithms, DPccp and Top-Down Parti-
tion Search, are not ready yet to be used in practice: there
exist two severe deficiencies in both of them. First, as has
been argued in several places, hypergraphs must be handled
by any plan generator [1, 19, 23]. Second, plan generators
have to deal with outer joins and antijoins [11, 19]. These
operators are, in general, not freely reorderable. That is,
there might exist di↵erent orderings, which produce di↵er-
ent results. This is not true for the regular, inner join: any
ordering gives the same result. Restricting the ordering to
valid orderings for outer joins, that is those which produce
the same result as the original query, has been the subject
of the seminal work by Galindo-Legaria and Rosenthal [10,
11, 20]. They also propose a dynamic programming algo-
rithm that takes into account the intricacy of outer joins.
Their algorithm has been extended by Bhargava et al. to
deal with hyperedges [1]. A more practical approach has
been proposed by Rao et al. [19]. They also include the
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